Holographic Nuclear Physics with Massive Quarks


Abstract in English

We discuss nuclear physics in the Witten-Sakai-Sugimoto model, in the limit of large number $N_c$ of colors and large t Hooft coupling, with the addition of a finite mass for the quarks. Individual baryons are described by classical solitons whose size is much smaller than the typical distance in nuclear bound states, thus we can use the linear approximation to compute the interaction potential and provide a natural description for lightly bound states. We find the classical geometry of nuclear bound states for baryon numbers up to B=8. The effect of the finite pion mass - induced by the quark mass via the GMOR relation - is to decrease the binding energy of the nuclei with respect to the massless case. We discuss the finite density case with a particular choice of a cubic lattice, for which we find the critical chemical potential, at which the hadronic phase transition occurs.

Download