Do you want to publish a course? Click here

Variable Inflaton Equation of State and Reheating

73   0   0.0 ( 0 )
 Added by Alessandro Di Marco
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the consequences of a time-dependent inflaton Equation-of-State (EoS) parameter in the context of the post-inflationary perturbative Boltzmann reheating. In particular, we numerically solve the perturbative coupled system of Boltzmann equations involving the inflaton energy density, the radiation energy density and the related entropy density and temperature of the produced particle thermal bath. We exploit reasonable Ansatze for the EoS and discuss the robustness of the Boltzmann system. We also comment on the possible microscopic origin related to a time dependent inflaton potential, discussing the consequences on a preheating stage and the related (primordial) gravitational waves.

rate research

Read More

We analyze in detail the perturbative decay of the inflaton oscillating about a generic form of its potential $V(phi) = phi^k$, taking into account the effects of non-instantaneous reheating. We show that evolution of the temperature as a function of the cosmological scale factor depends on the spin statistics of the final state decay products when $k > 2$. We also include the inflaton-induced mass of the final states leading to either kinematic suppression or enhancement if the final states are fermionic or bosonic respectively. We compute the maximum temperature reached after inflation, the subsequent evolution of the temperature and the final reheat temperature. We apply our results to the computation of the dark matter abundance through thermal scattering during reheating. We also provide an example based on supersymmetry for the coupling of the inflaton to matter.
We investigate the cosmological applications of fluids having an equation of state which is the analog to the one related to the isotropic deformation of crystalline solids, that is containing logarithmic terms of the energy density, allowing additionally for a bulk viscosity. We consider two classes of scenarios and we show that they are both capable of triggering the transition from deceleration to acceleration at late times. Furthermore, we confront the scenarios with data from Supernovae type Ia (SN Ia) and Hubble function observations, showing that the agreement is excellent. Moreover, we perform a dynamical system analysis and we show that there exist asymptotic accelerating attractors, arisen from the logarithmic terms as well as from the viscosity, which in most cases correspond to a phantom late-time evolution. Finally, for some parameter regions we obtain a nearly de Sitter late-time attractor, which is a significant capability of the scenario since the dark energy, although dynamical, stabilizes at the cosmological constant value.
We discuss scalar-tensor realizations of the Anamorphic cosmological scenario recently proposed by Ijjas and Steinhardt. Through an analysis of the dynamics of cosmological perturbations we obtain constraints on the parameters of the model. We also study gravitational Parker particle production in the contracting Anamorphic phase and we compute the fraction between the energy density of created particles at the end of the phase and the background energy density. We find that, as in the case of inflation, a new mechanism is required to reheat the universe.
391 - A. Kyriazis 2019
We develop an analytic approximation for the coincidence limit of a massive scalar propagator in an arbitrary spatially flat, homogeneous and isotropic geometry. We employ this to compute the one loop corrections to the inflaton effective potential from a quadratic coupling to a minimally coupled scalar. We also extend the Friedmann equations to cover potentials that depend locally on the Hubble parameter and the first slow roll parameter.
We show that the extended cosmological equation-of-state developed starting from a Chaplygin equation-of-state, recently applied to stellar modeling, is a viable dark energy model consistent with standard scalar potentials. Moreover we find a Lagrangian formulation based on a canonical scalar field with the appropriate self-interaction potential. Finally, we fit the scalar potential obtained numerically with concrete functions well studied in the literature. Our results may be of interest to model builders and particle physicists.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا