Do you want to publish a course? Click here

Extended X-ray Emission in Compton Thick AGN with Deep Chandra Observations

326   0   0.0 ( 0 )
 Added by Mackenzie Jones
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present the spatial analysis of five Compton thick (CT) active galactic nuclei (AGNs), including MKN 573, NGC 1386, NGC 3393, NGC 5643, and NGC 7212, for which high resolution Chandra observations are available. For each source, we find hard X-ray emission (>3 keV) extending to ~kpc scales along the ionization cone, and for some sources, in the cross-cone region. This collection represents the first, high-signal sample of CT AGN with extended hard X-ray emission for which we can begin to build a more complete picture of this new population of AGN. We investigate the energy dependence of the extended X-ray emission, including possible dependencies on host galaxy and AGN properties, and find a correlation between the excess emission and obscuration, suggesting a connection between the nuclear obscuring material and the galactic molecular clouds. Furthermore, we find that the soft X-ray emission extends farther than the hard X-rays along the ionization cone, which may be explained by a galactocentric radial dependence on the density of molecular clouds due to the orientation of the ionization cone with respect to the galactic disk. These results are consistent with other CT AGN with observed extended hard X-ray emission (e.g., ESO 428-G014 and the Ma et al. 2020 CT AGN sample), further demonstrating the ubiquity of extended hard X-ray emission in CT AGN.



rate research

Read More

The recent Chandra discovery of extended $sim$kpc-scale hard ($>$ 3 keV) X-ray emission in nearby Compton-thick (CT) active galactic nuclei (AGN) opens a new window to improving AGN torus modeling and investigating how the central super massive black hole interacts with and impacts the host galaxy. Since there are only a handful of detections so far, we need to establish a statistical sample to determine the ubiquity of the extended hard X-ray emission in CT AGN, and quantify the amount and extent of this component. In this paper, we present the spatial analysis results of a pilot Chandra imaging survey of 7 nearby ($0.006 < z < 0.013$) CT AGN selected from the Swift-BAT spectroscopic AGN survey. We find that five out of the seven CT AGN show extended emission in the 3-7 keV band detected at $>$ 3$sigma$ above the Chandra PSF with $sim$12% to 22% of the total emission in the extended components. ESO 137-G034 and NGC 3281 display biconical ionization structures with extended hard X-ray emission reaching kpc-scales ($sim$ 1.9 kpc and 3.5 kpc in diameter). The other three show extended hard X-ray emission above the PSF out to at least $sim$360 pc in radius. We find a trend that a minimum 3-7 keV count rate of 0.01 cts/s and total excess fraction $>$20% is required to detect a prominent extended hard X-ray component. Given that this extended hard X-ray component appears to be relatively common in this uniformly selected CT AGN sample, we further discuss the implications for torus modeling and AGN feedback.
Recent observations of nearby Compton thick (CT) active galactic nuclei (AGNs) with Chandra have resolved hard (>3 keV) X-ray emission extending out from the central supermassive black hole to kiloparsec scales, challenging the long-held belief that the characteristic hard X-ray continuum and fluorescent Fe K lines originate in the inner ~parsec due to the excitation of obscuring material. In this paper we present the results of the most recent Chandra ACIS-S observations of NGC 7212, a CT AGN in a compact group of interacting galaxies, with a total effective exposure of ~150 ks. We find ~20 percent of the observed emission is found outside of the central ~kiloparsec, with ~17 percent associated with the soft X-rays, and ~3 percent with hard X-ray continuum and Fe K line. This emission is extended both along the ionization cone and in the cross-cone direction up to ~3.8 kpc scales. The spectrum of NGC 7212 is best represented by a mixture of thermal and photoionization models that indicate the presence of complex gas interactions. These observations are consistent with what is observed in other CT AGN (e.g., ESO 428-G014, NGC 1068), providing further evidence that this may be a common phenomenon. High-resolution observations of extended CT AGN provide an especially valuable environment for understanding how AGN feedback impacts host galaxies on galactic scales.
Even in deep X-ray surveys, Compton-thick active galactic nuclei (CT AGNs, ${rm N_H} geqslant 1.5~times~10^{24}~{rm cm}^{-2}$) are difficult to be identified due to X-ray flux suppression and their complex spectral shape. However, the study of CT AGNs is vital for understanding the rapid growth of black holes and the origin of cosmic X-ray background. In the local universe, the fraction of CT AGNs accounts for 30% of the whole AGN population. We may expect a higher fraction of CT AGNs in deep X-ray surveys, however, only 10% of AGNs have been identified as CT AGNs in the 7 Ms textit{Chandra} Deep Field-South (CDFS) survey. In this work, we select 51 AGNs with abundant multi-wavelength data. Using the method of the mid-infrared (mid-IR) excess, we select hitherto unknown 8 CT AGN candidates in our sample. Seven of these candidates can confirm as CT AGN based on the multi-wavelength identification approach, and a new CT AGN (XID 133) is identified through the mid-IR diagnostics. We also discuss the X-ray origin of these eight CT AGNs and the reason why their column densities were underestimated in previous studies. We find that the multi-wavelength approaches of selecting CT AGNs are highly efficient, provided the high quality of observational data. We also find that CT AGNs have a higher Eddington ratio than non-CT AGNs, and that both CT AGNs and non-CT AGNs show similar properties of host galaxies.
The estimate of the number and space density of obscured AGN over cosmic time still represents an open issue. While the obscured AGN population is a key ingredient of the X-ray background synthesis models and is needed to reproduce its shape, a complete census of obscured AGN is still missing. Here we test the selection of obscured sources among the local 12-micron sample of Seyfert galaxies. Our selection is based on a difference up to three orders of magnitude in the ratio between the AGN bolometric luminosity, derived from the spectral energy distribution (SED) decomposition, and the same quantity obtained by the published XMM-Newton 2-10 keV luminosity. The selected sources are UGC05101, NGC1194 and NGC3079 for which the available X-ray wide bandpass, from Chandra and XMM-Newton plus NuSTAR data, extending to energies up to ~30-45 keV, allows us an accurate determination of the column density, and hence of the true intrinsic power. The newly derived NH values clearly indicate heavy obscuration (about 1.2, 2.1 and 2.4 x10^{24} cm-2 for UGC05101, NGC1194 and NGC3079, respectively) and are consistent with the prominent silicate absorption feature observed in the Spitzer-IRS spectra of these sources (at 9.7 micron rest frame). We finally checked that the resulting X-ray luminosities in the 2-10 keV band are in good agreement with those derived from the mid-IR band through empirical L_MIR-L_X relations.
We present a detailed X-ray spectral analysis of 1152 AGNs selected in the Chandra Deep Fields (CDFs), in order to identify highly obscured AGNs ($N_{rm H} > 10^{23} rm cm^{-2}$). By fitting spectra with physical models, 436 (38%) sources with $L_{rm X} > 10^{42} rm erg s^{-1}$ are confirmed to be highly obscured, including 102 Compton-thick (CT) candidates. We propose a new hardness-ratio measure of the obscuration level which can be used to select highly obscured AGN candidates. The completeness and accuracy of applying this method to our AGNs are 88% and 80%, respectively. The observed logN-logS relation favors cosmic X-ray background models that predict moderate (i.e., between optimistic and pessimistic) CT number counts. 19% (6/31) of our highly obscured AGNs that have optical classifications are labeled as broad-line AGNs, suggesting that, at least for part of the AGN population, the heavy X-ray obscuration is largely a line-of-sight effect, i.e., some high-column-density clouds on various scales (but not necessarily a dust-enshrouded torus) along our sightline may obscure the compact X-ray emitter. After correcting for several observational biases, we obtain the intrinsic NH distribution and its evolution. The CT-to-highly-obscured fraction is roughly 52% and is consistent with no evident redshift evolution. We also perform long-term (~17 years in the observed frame) variability analyses for 31 sources with the largest number of counts available. Among them, 17 sources show flux variabilities: 31% (5/17) are caused by the change of NH, 53% (9/17) are caused by the intrinsic luminosity variability, 6% (1/17) are driven by both effects, and 2 are not classified due to large spectral fitting errors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا