Molecular simulations generally require fermionic encoding in which fermion statistics are encoded into the qubit representation of the wave function. Recent calculations suggest that fermionic encoding of the wave function can be bypassed, leading to more efficient quantum computations. Here we show that the energy can be expressed as a functional of the two-electron reduced density matrix (2-RDM) where the 2-RDM is a unique functional of the unencoded $N$-qubit-particle wave function. Contrasts are made with current hardware-efficient methods. An application to computing the ground-state energy and 2-RDM of H$_{4}$ is presented.