Do you want to publish a course? Click here

An Interpretation of Regularization by Denoising and its Application with the Back-Projected Fidelity Term

89   0   0.0 ( 0 )
 Added by Einav Yogev-Ofer
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The vast majority of image recovery tasks are ill-posed problems. As such, methods that are based on optimization use cost functions that consist of both fidelity and prior (regularization) terms. A recent line of works imposes the prior by the Regularization by Denoising (RED) approach, which exploits the good performance of existing image denoising engines. Yet, the relation of RED to explicit prior terms is still not well understood, as previous work requires too strong assumptions on the denoisers. In this paper, we make two contributions. First, we show that the RED gradient can be seen as a (sub)gradient of a prior function--but taken at a denoised version of the point. As RED is typically applied with a relatively small noise level, this interpretation indicates a similarity between RED and traditional gradients. This leads to our second contribution: We propose to combine RED with the Back-Projection (BP) fidelity term rather than the common Least Squares (LS) term that is used in previous works. We show that the advantages of BP over LS for image deblurring and super-resolution, which have been demonstrated for traditional gradients, carry on to the RED approach.



rate research

Read More

122 - Zihui Wu , Yu Sun , Jiaming Liu 2019
Regularization by denoising (RED) is a powerful framework for solving imaging inverse problems. Most RED algorithms are iterative batch procedures, which limits their applicability to very large datasets. In this paper, we address this limitation by introducing a novel online RED (On-RED) algorithm, which processes a small subset of the data at a time. We establish the theoretical convergence of On-RED in convex settings and empirically discuss its effectiveness in non-convex ones by illustrating its applicability to phase retrieval. Our results suggest that On-RED is an effective alternative to the traditional RED algorithms when dealing with large datasets.
Regularization by denoising (RED) is a broadly applicable framework for solving inverse problems by using priors specified as denoisers. While RED has been shown to provide state-of-the-art performance in a number of applications, existing RED algorithms require exact knowledge of the measurement operator characterizing the imaging system, limiting their applicability in problems where the measurement operator has parametric uncertainties. We propose a new method, called Calibrated RED (Cal-RED), that enables joint calibration of the measurement operator along with reconstruction of the unknown image. Cal-RED extends the traditional RED methodology to imaging problems that require the calibration of the measurement operator. We validate Cal-RED on the problem of image reconstruction in computerized tomography (CT) under perturbed projection angles. Our results corroborate the effectiveness of Cal-RED for joint calibration and reconstruction using pre-trained deep denoisers as image priors.
Inverse problems in image processing are typically cast as optimization tasks, consisting of data-fidelity and stabilizing regularization terms. A recent regularization strategy of great interest utilizes the power of denoising engines. Two such methods are the Plug-and-Play Prior (PnP) and Regularization by Denoising (RED). While both have shown state-of-the-art results in various recovery tasks, their theoretical justification is incomplete. In this paper, we aim to bridge between RED and PnP, enriching the understanding of both frameworks. Towards that end, we reformulate RED as a convex optimization problem utilizing a projection (RED-PRO) onto the fixed-point set of demicontractive denoisers. We offer a simple iterative solution to this problem, by which we show that PnP proximal gradient method is a special case of RED-PRO, while providing guarantees for the convergence of both frameworks to globally optimal solutions. In addition, we present relaxations of RED-PRO that allow for handling denoisers with limited fixed-point sets. Finally, we demonstrate RED-PRO for the tasks of image deblurring and super-resolution, showing improved results with respect to the original RED framework.
A geometric interpretation for the A-fidelity between two states of a qubit system is presented, which leads to an upper bound of the Bures fidelity. The metrics defined based on the A-fidelity are studied by numerical method. An alternative generalization of the A-fidelity, which has the same geometric picture, to a $N$-state quantum system is also discussed.
Image denoising is a well-known and well studied problem, commonly targeting a minimization of the mean squared error (MSE) between the outcome and the original image. Unfortunately, especially for severe noise levels, such Minimum MSE (MMSE) solutions may lead to blurry output images. In this work we propose a novel stochastic denoising approach that produces viable and high perceptual quality results, while maintaining a small MSE. Our method employs Langevin dynamics that relies on a repeated application of any given MMSE denoiser, obtaining the reconstructed image by effectively sampling from the posterior distribution. Due to its stochasticity, the proposed algorithm can produce a variety of high-quality outputs for a given noisy input, all shown to be legitimate denoising results. In addition, we present an extension of our algorithm for handling the inpainting problem, recovering missing pixels while removing noise from partially given data.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا