No Arabic abstract
Traditional industrial recommenders are usually trained on a single business domain and then serve for this domain. However, in large commercial platforms, it is often the case that the recommenders need to make click-through rate (CTR) predictions for multiple business domains. Different domains have overlapping user groups and items. Thus, there exist commonalities. Since the specific user groups have disparity and the user behaviors may change in various business domains, there also have distinctions. The distinctions result in domain-specific data distributions, making it hard for a single shared model to work well on all domains. To learn an effective and efficient CTR model to handle multiple domains simultaneously, we present Star Topology Adaptive Recommender (STAR). Concretely, STAR has the star topology, which consists of the shared centered parameters and domain-specific parameters. The shared parameters are applied to learn commonalities of all domains, and the domain-specific parameters capture domain distinction for more refined prediction. Given requests from different business domains, STAR can adapt its parameters conditioned on the domain characteristics. The experimental result from production data validates the superiority of the proposed STAR model. Since 2020, STAR has been deployed in the display advertising system of Alibaba, obtaining averaging 8.0% improvement on CTR and 6.0% on RPM (Revenue Per Mille).
The CTR (Click-Through Rate) prediction plays a central role in the domain of computational advertising and recommender systems. There exists several kinds of methods proposed in this field, such as Logistic Regression (LR), Factorization Machines (FM) and deep learning based methods like Wide&Deep, Neural Factorization Machines (NFM) and DeepFM. However, such approaches generally use the vector-product of each pair of features, which have ignored the different semantic spaces of the feature interactions. In this paper, we propose a novel Tensor-based Feature interaction Network (TFNet) model, which introduces an operating tensor to elaborate feature interactions via multi-slice matrices in multiple semantic spaces. Extensive offline and online experiments show that TFNet: 1) outperforms the competitive compared methods on the typical Criteo and Avazu datasets; 2) achieves large improvement of revenue and click rate in online A/B tests in the largest Chinese App recommender system, Tencent MyApp.
Learning sophisticated feature interactions behind user behaviors is critical in maximizing CTR for recommender systems. Despite great progress, existing methods have a strong bias towards low- or high-order interactions, or rely on expertise feature engineering. In this paper, we show that it is possible to derive an end-to-end learning model that emphasizes both low- and high-order feature interactions. The proposed framework, DeepFM, combines the power of factorization machines for recommendation and deep learning for feature learning in a new neural network architecture. Compared to the latest Wide & Deep model from Google, DeepFM has a shared raw feature input to both its wide and deep components, with no need of feature engineering besides raw features. DeepFM, as a general learning framework, can incorporate various network architectures in its deep component. In this paper, we study two instances of DeepFM where its deep component is DNN and PNN respectively, for which we denote as DeepFM-D and DeepFM-P. Comprehensive experiments are conducted to demonstrate the effectiveness of DeepFM-D and DeepFM-P over the existing models for CTR prediction, on both benchmark data and commercial data. We conduct online A/B test in Huawei App Market, which reveals that DeepFM-D leads to more than 10% improvement of click-through rate in the production environment, compared to a well-engineered LR model. We also covered related practice in deploying our framework in Huawei App Market.
Click-Through Rate (CTR) prediction plays an important role in many industrial applications, and recently a lot of attention is paid to the deep interest models which use attention mechanism to capture user interests from historical behaviors. However, most current models are based on sequential models which truncate the behavior sequences by a fixed length, thus have difficulties in handling very long behavior sequences. Another big problem is that sequences with the same length can be quite different in terms of time, carrying completely different meanings. In this paper, we propose a non-sequential approach to tackle the above problems. Specifically, we first represent the behavior data in a sparse key-vector format, where the vector contains rich behavior info such as time, count and category. Next, we enhance the Deep Interest Network to take such rich information into account by a novel attention network. The sparse representation makes it practical to handle large scale long behavior sequences. Finally, we introduce a multidimensional partition framework to mine behavior interactions. The framework can partition data into custom designed time buckets to capture the interactions among information aggregated in different time buckets. Similarly, it can also partition the data into different categories and capture the interactions among them. Experiments are conducted on two public datasets: one is an advertising dataset and the other is a production recommender dataset. Our models outperform other state-of-the-art models on both datasets.
Click-through rate (CTR) prediction is a critical problem in web search, recommendation systems and online advertisement displaying. Learning good feature interactions is essential to reflect users preferences to items. Many CTR prediction models based on deep learning have been proposed, but researchers usually only pay attention to whether state-of-the-art performance is achieved, and ignore whether the entire framework is reasonable. In this work, we use the discrete choice model in economics to redefine the CTR prediction problem, and propose a general neural network framework built on self-attention mechanism. It is found that most existing CTR prediction models align with our proposed general framework. We also examine the expressive power and model complexity of our proposed framework, along with potential extensions to some existing models. And finally we demonstrate and verify our insights through some experimental results on public datasets.
In the Click-Through Rate (CTR) prediction scenario, users sequential behaviors are well utilized to capture the user interest in the recent literature. However, despite being extensively studied, these sequential methods still suffer from three limitations. First, existing methods mostly utilize attention on the behavior of users, which is not always suitable for CTR prediction, because users often click on new products that are irrelevant to any historical behaviors. Second, in the real scenario, there exist numerous users that have operations a long time ago, but turn relatively inactive in recent times. Thus, it is hard to precisely capture users current preferences through early behaviors. Third, multiple representations of users historical behaviors in different feature subspaces are largely ignored. To remedy these issues, we propose a Multi-Interactive Attention Network (MIAN) to comprehensively extract the latent relationship among all kinds of fine-grained features (e.g., gender, age and occupation in user-profile). Specifically, MIAN contains a Multi-Interactive Layer (MIL) that integrates three local interaction modules to capture multiple representations of user preference through sequential behaviors and simultaneously utilize the fine-grained user-specific as well as context information. In addition, we design a Global Interaction Module (GIM) to learn the high-order interactions and balance the different impacts of multiple features. Finally, Offline experiment results from three datasets, together with an Online A/B test in a large-scale recommendation system, demonstrate the effectiveness of our proposed approach.