In this article, we summarize two agnostic approaches in the framework of spatially curved Friedmann-Robertson-Walker (FRW) cosmologies discussed in detail in (Kerachian et al., 2020, 2019). The first case concerns the dynamics of a fluid with an unspecified barotropic equation of state (EoS), for which the only assumption made is the non-negativity of the fluids energy density. The second case concerns the dynamics of a non-minimally coupled real scalar field with unspecified positive potential. For each of these models, we define a new set of dimensionless variables and a new evolution parameter. In the framework of these agnostic setups, we are able to identify several general features, like symmetries, invariant subsets and critical points, and provide their cosmological interpretation.