No Arabic abstract
Unmanned aerial vehicles (UAVs) play an increasingly important role in military, public, and civilian applications, where providing connectivity to UAVs is crucial for its real-time control, video streaming, and data collection. Considering that cellular networks offer wide area, high speed, and secure wireless connectivity, cellular-connected UAVs have been considered as an appealing solution to provide UAV connectivity with enhanced reliability, coverage, throughput, and security. Due to the nature of UAVs mobility, the throughput, reliability and End-to-End (E2E) delay of UAVs communication under various flight heights, video resolutions, and transmission frequencies remain unknown. To evaluate these parameters, we develop a cellular-connected UAV testbed based on the Long Term Evolution (LTE) network with its uplink video transmission and downlink control&command (CC) transmission. We also design algorithms for sending control signal and controlling UAV. The indoor experimental results provide fundamental insights for the cellular-connected UAV system design from the perspective of transmission frequency, adaptability, and link outage, respectively.
Connected and Automated Vehicles (CAVs), particularly those with a hybrid electric powertrain, have the potential to significantly improve vehicle energy savings in real-world driving conditions. In particular, the Eco-Driving problem seeks to design optimal speed and power usage profiles based on available information from connectivity and advanced mapping features to minimize the fuel consumption over an itinerary. This paper presents a hierarchical multi-layer Model Predictive Control (MPC) approach for improving the fuel economy of a 48V mild-hybrid powertrain in a connected vehicle environment. Approximate Dynamic Programming (ADP) is used to solve the Receding Horizon Optimal Control Problem (RHOCP), where the terminal cost for the RHOCP is approximated as the base-policy obtained from the long-term optimization. The controller was extensively tested virtually (using both deterministic and Monte Carlo simulations) across multiple real-world routes where energy savings of more than 20% have been demonstrated. Further, the developed controller was deployed and tested at a proving ground in real-time on a test vehicle equipped with a rapid prototyping embedded controller. Real-time in-vehicle testing confirmed the energy savings observed in simulation and demonstrated the ability of the developed controller to be effective in real-time applications.
The paper considers the problem of controlling Connected and Automated Vehicles (CAVs) traveling through a three-entry roundabout so as to jointly minimize both the travel time and the energy consumption while providing speed-dependent safety guarantees, as well as satisfying velocity and acceleration constraints. We first design a systematic approach to dynamically determine the safety constraints and derive the unconstrained optimal control solution. A joint optimal control and barrier function (OCBF) method is then applied to efficiently obtain a controller that optimally track the unconstrained optimal solution while guaranteeing all the constraints. Simulation experiments are performed to compare the optimal controller to a baseline of human-driven vehicles showing effectiveness under symmetric and asymmetric roundabout configurations, balanced and imbalanced traffic rates and different sequencing rules for CAVs.
The safety of connected automated vehicles (CAVs) relies on the reliable and efficient raw data sharing from multiple types of sensors. The 5G millimeter wave (mmWave) communication technology can enhance the environment sensing ability of different isolated vehicles. In this paper, a joint sensing and communication integrated system (JSCIS) is designed to support the dynamic frame structure configuration for sensing and communication dual functions based on the 5G New Radio protocol in the mmWave frequency band, which can solve the low latency and high data rate problems of raw sensing data sharing among CAVs. To evaluate the timeliness of raw sensing data transmission, the best time duration allocation ratio of sensing and communication dual functions for one vehicle is achieved by modeling the M/M/1 queuing problem using the age of information (AoI) in this paper. Furthermore, the resource allocation optimization problem among multiple CAVs is formulated as a non-cooperative game using the radar mutual information as a key indicator. And the feasibility and existence of pure strategy Nash equilibrium (NE) are proved theoretically, and a centralized time resource allocation (CTRA) algorithm is proposed to achieve the best feasible pure strategy NE. Finally, both simulation and hardware testbed are designed, and the results show that the proposed CTRA algorithm can improve the radar total mutual information by 26%, and the feasibility of the proposed JSCIS is achieved with an acceptable radar ranging accuracy within 0.25 m, as well as a stable data rate of 2.8 Gbps using the 28 GHz mmWave frequency band.
In this paper, we study the trajectory design for a cellular-connected unmanned aerial vehicle (UAV) with given initial and final locations, while communicating with the ground base stations (GBSs) along its flight. We consider delay-limited communications between the UAV and its associated GBSs, where a given signal-to-noise ratio (SNR) target needs to be satisfied at the receiver. However, in practice, due to various factors such as quality-of-service (QoS) requirement, GBSs availability and UAV mobility constraints, the SNR target may not be met at certain time periods during the flight, each termed as an outage duration. In this paper, we aim to optimize the UAV trajectory to minimize its mission completion time, subject to a constraint on the maximum tolerable outage duration in its flight. To tackle this non-convex problem, we first transform it into a more tractable form and thereby reveal some useful properties of the optimal trajectory solution. Based on these properties, we then further simplify the problem and propose efficient algorithms to check the feasibility of the problem as well as to obtain its optimal and high-quality suboptimal solutions, by leveraging graph theory and convex optimization techniques. Numerical results show that our proposed trajectory designs outperform the conventional method based on dynamic programming, in terms of both performance and complexity.
In this paper, we study the three-dimensional (3D) path planning for a cellular-connected unmanned aerial vehicle (UAV) to minimize its flying distance from given initial to final locations, while ensuring a target link quality in terms of the expected signal-to-interference-plus-noise ratio (SINR) at the UAV receiver with each of its associated ground base stations (GBSs) during the flight. To exploit the location-dependent and spatially varying channel as well as interference over the 3D space, we propose a new radio map based path planning framework for the UAV. Specifically, we consider the channel gain map of each GBS that provides its large-scale channel gains with uniformly sampled locations on a 3D grid, which are due to static and large-size obstacles (e.g., buildings) and thus assumed to be time-invariant. Based on the channel gain maps of GBSs as well as their loading factors, we then construct an SINR map that depicts the expected SINR levels over the sampled 3D locations. By leveraging the obtained SINR map, we proceed to derive the optimal UAV path by solving an equivalent shortest path problem (SPP) in graph theory. We further propose a grid quantization approach where the grid points in the SINR map are more coarsely sampled by exploiting the spatial channel/interference correlation over neighboring grids. Then, we solve an approximate SPP over the reduced-size SINR map (graph) with reduced complexity. Numerical results show that the proposed solution can effectively minimize the flying distance/time of the UAV subject to its communication quality constraint, and a flexible trade-off between performance and complexity can be achieved by adjusting the grid quantization ratio in the SINR map. Moreover, the proposed solution significantly outperforms various benchmark schemes without fully exploiting the channel/interference spatial distribution in the network.