No Arabic abstract
In situ generation of a high-energy, high-current, spin-polarized electron beam is an outstanding scientific challenge to the development of plasma-based accelerators for high-energy colliders. In this Letter we show how such a spin-polarized relativistic beam can be produced by ionization injection of electrons of certain atoms with a circularly polarized laser field into a beam-driven plasma wakefield accelerator, providing a much desired one-step solution to this challenge. Using time-dependent Schrodinger equation (TDSE) simulations, we show the propensity rule of spin-dependent ionization of xenon atoms can be reversed in the strong-field multi-photon regime compared with the non-adiabatic tunneling regime, leading to high total spin-polarization. Furthermore, three-dimensional particle-in-cell (PIC) simulations are incorporated with TDSE simulations, providing start-to-end simulations of spin-dependent strong-field ionization of xenon atoms and subsequent trapping, acceleration, and preservation of electron spin-polarization in lithium plasma. We show the generation of a high-current (0.8 kA), ultra-low-normalized-emittance (~37 nm), and high-energy (2.7 GeV) electron beam within just 11 cm distance, with up to ~31% net spin polarization. Higher current, energy, and net spin-polarization beams are possible by optimizing this concept, thus solving a long-standing problem facing the development of plasma accelerators.
In the past decades, beam-driven plasma wakefield acceleration (PWFA) experiments have seen remarkable progress by using high-energy particle beams such as electron, positron and proton beams to drive wakes in neutral gas or pre-ionized plasma. This review highlights a few recent experiments in the world to compare experiment parameters and results.
Next-generation plasma-based accelerators can push electron bunches to gigaelectronvolt energies within centimetre distances. The plasma, excited by a driver pulse, generates large electric fields that can efficiently accelerate a trailing witness bunch making possible the realization of laboratory-scale applications ranging from high-energy colliders to ultra-bright light sources. So far several experiments have demonstrated a significant acceleration but the resulting beam quality, especially the energy spread, is still far from state of the art conventional accelerators. Here we show the results of a beam-driven plasma acceleration experiment where we used an electron bunch as a driver followed by an ultra-short witness. The experiment demonstrates, for the first time, an innovative method to achieve an ultra-low energy spread of the accelerated witness of about 0.1%. This is an order of magnitude smaller than what has been obtained so far. The result can lead to a major breakthrough toward the optimization of the plasma acceleration process and its implementation in forthcoming compact machines for user-oriented applications.
It is demonstrated that the performance of the self-modulated proton driver plasma wakefield accelerator (SM-PDPWA) is strongly affected by the reduced phase velocity of the plasma wave. Using analytical theory and particle-in-cell simulations, we show that the reduction is largest during the linear stage of self-modulation. As the instability nonlinearly saturates, the phase velocity approaches that of the driver. The deleterious effects of the wakes dynamics on the maximum energy gain of accelerated electrons can be avoided using side-injections of electrons, or by controlling the wakes phase velocity by smooth plasma density gradients.
We propose a new method for self-injection of high-quality electron bunches in the plasma wakefield structure in the blowout regime utilizing a flying focus produced by a drive-beam with an energy-chirp. In a flying focus the speed of the density centroid of the drive bunch can be superluminal or subluminal by utilizing the chromatic dependence of the focusing optics. We first derive the focal velocity and the characteristic length of the focal spot in terms of the focal length and an energy chirp. We then demonstrate using multi-dimensional particle-in-cell simulations that a wake driven by a superluminally propagating flying focus of an electron beam can generate GeV-level electron bunches with ultra-low normalized slice emittance ($sim$30 nm rad), high current ($sim$ 17 kA), low slice energy-spread ($sim$0.1%) and therefore high normalized brightness ($>10^{19}$ A/rad$^2$/m$^2$) in a plasma of density $sim10^{19}$ cm$^{-3}$. The injection process is highly controllable and tunable by changing the focal velocity and shaping the drive beam current. Near-term experiments using the new FACET II beam could potentially produce beams with brightness exceeding $10^{20}$ A/rad$^2$/m$^2$.
Plasma wakefield acceleration in the blowout regime is particularly promising for high-energy acceleration of electron beams because of its potential to simultaneously provide large acceleration gradients and high energy transfer efficiency while maintaining excellent beam quality. However, no equivalent regime for positron acceleration in plasma wakes has been discovered to-date. We show that after a short propagation distance, an asymmetric electron beam drives a stable wakefield in a hollow plasma channel that can be both accelerating and focusing for a positron beam. A high charge positron bunch placed at a suitable distance behind the drive bunch can beam-load or flatten the longitudinal wakefield and enhance the transverse focusing force, leading to high-efficiency and narrow energy spread acceleration of the positrons. Three-dimensional quasi-static particle-in-cell (PIC) simulations show that over 30% energy extraction efficiency from the wake to the positrons and 1% level energy spread can be simultaneously obtained, and further optimization is feasible.