Efficacy of simple continuum models for diverse granular intrusions


Abstract in English

Granular intrusion is commonly observed in natural and human-made settings. Unlike typical solids and fluids, granular media can simultaneously display fluid-like and solid-like characteristics in a variety of intrusion scenarios. This multi-phase behavior increases the difficulty of accurately modeling these and other yielding (or flowable) materials. Micro-scale modeling methods, such as DEM (Discrete Element Method), capture this behavior by modeling the media at the grain scale, but there is often interest in the macro-scale characterizations of such systems. We examine the efficacy of a macro-scale continuum approach in modeling and understanding the physics of various macroscopic phenomena in a variety of granular intrusion cases using two basic frictional yielding constitutive models. We compare predicted granular force response and material flow to experimental data in four quasi-2D intrusion cases: (1) depth-dependent force response in horizontal submerged-intruder motion; (2) separation dependent drag variation in parallel-plate vertical-intrusion; (3) initial-density-dependent drag fluctuations in free surface plowing, and (4) flow zone development during vertical plate intrusions in under-compacted granular media. Our continuum modeling approach captures the flow process and drag forces while providing key meso- and macro-scopic insights. The modeling results are then compared to experimental data. Our study highlights how continuum modeling approaches provide an alternative for efficient modeling as well as a conceptual understanding of various granular intrusion phenomena.

Download