Do you want to publish a course? Click here

Computing and Memory Technologies based on Magnetic Skyrmions

233   0   0.0 ( 0 )
 Added by Hamed Vakili
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Solitonic magnetic excitations such as domain walls and, specifically, skyrmionics enable the possibility of compact, high density, ultrafast,all-electronic, low-energy devices, which is the basis for the emerging area of skyrmionics. The topological winding of skyrmion spins affects their overall lifetime, energetics and dynamical behavior. In this review, we discuss skyrmionics in the context of the present day solid state memory landscape, and show how their size, stability and mobility can be controlled by material engineering, as well as how they can be nucleated and detected. Ferrimagnetsnear their compensation points are important candidates for this application, leading to detailed exploration of amorphous CoGd as well as the study of emergent materials such as Mn$_4$N and Inverse Heusler alloys. Along with material properties, geometrical parameters such as film thickness, defect density and notches can be used to tune skyrmion properties, such as their size and stability. Topology, however, can be a double-edged sword, especially for isolated metastable skyrmions, as it brings stability at the cost of additional damping and deflective Magnus forces compared to domain walls. Skyrmion deformation in response to forces also makes them intrinsically slower than domain walls. We explore potential analog applications of skyrmions, including temporal memory at low density, and decorrelator for stochastic computing at a higher density that capitalizes on their interactions. We summarize the main challenges to achieve a skyrmionics technology, including maintaining positional stability with very high accuracy, electrical readout, especially for small ferrimagnetic skyrmions, deterministic nucleation and annihilation, and overall integration with digital circuits with the associated circuit overhead.



rate research

Read More

We propose a novel binary and quaternary memory device based upon skyrmion states induced by the oblique field in a square magnetic island. To describe stable states and dynamics of the skyrmion, we employ the lattice model that uses the parameters of a real material and accounts for all relevant interactions. Depending on the orientation of the field, two or four spatially separated energy minima emerge in the oblique field. The energy barriers between the minima can be controlled by the strength and orientation of the magnetic field. We study the dynamics of the skyrmion and show that it can be moved between any two states by application of the field gradient. Islands of thickness of a few tens of atomic layers permit room-temperature manipulation of the proposed device.
Controlling magnetic states by a small current is essential for the next-generation of energy-efficient spintronic devices. However, it invariably requires considerable energy to change a magnetic ground state of intrinsically quantum nature governed by fundamental Hamiltonian, once stabilized below a phase transition temperature. We report that surprisingly an in-plane current can tune the magnetic state of nm-thin van der Waals ferromagnet Fe3GeTe2 from a hard magnetic state to a soft magnetic state. It is the direct demonstration of the current-induced substantial reduction of the coercive field. This surprising finding is possible because the in-plane current produces a highly unusual type of gigantic spin-orbit torque for Fe3GeTe2. And we further demonstrate a working model of a new nonvolatile magnetic memory based on the principle of our discovery in Fe3GeTe2, controlled by a tiny current. Our findings open up a new window of exciting opportunities for magnetic van der Waals materials with potentially huge impacts on the future development of spintronic and magnetic memory.
Magnetic skyrmions are topological magnetic spin structures exhibiting particle-like behaviour. They are of strong interest from a fundamental viewpoint and for application, where they have potential to act as information carriers in future low-power computing technologies. Importantly, skyrmions have high physical stability because of topological protection. However, they have potential to deform according to their local energy environment. Here we demonstrate that, in regions of high exchange energy density, skyrmions may exhibit such extreme deformation that spontaneous merging with nearest neighbours or spawning new skyrmions is favoured to attain a lower energy state. Using transmission electron microscopy and a high-speed imaging detector, we observe dynamics involving distinct configurational states, in which transitions are accompanied by spontaneous creation or annihilation of skyrmions. These observations raise important questions regarding the limits of skyrmion stability and topological charge conservation, while also suggesting a means of control of skyrmion creation and annihilation.
We demonstrate room-temperature stabilization of dipolar magnetic skyrmions with diameters in the range of $100$ nm in a single ultrathin layer of the Heusler alloy Co$_2$FeAl (CFA) under moderate magnetic fields. Current-induced skyrmion dynamics in microwires is studied with a scanning Nitrogen-Vacancy magnetometer operating in the photoluminescence quenching mode. We first demonstrate skyrmion nucleation by spin-orbit torque and show that its efficiency can be significantly improved using tilted magnetic fields, an effect which is not specific to Heusler alloys and could be advantageous for future skyrmion-based devices. We then show that current-induced skyrmion motion remains limited by strong pinning effects, even though CFA is a magnetic material with a low magnetic damping parameter.
We present a mechanism for deterministic control of the Bloch chirality in magnetic skyrmions originating from the interplay between an interfacial Dzyaloshinskii$-$Moriya interaction (DMI) and a perpendicular magnetic field. Although conventional interfacial DMI favors chiral Neel skyrmions, it does not break the energetic symmetry of the two Bloch chiralities in mixed Bloch$-$Neel skyrmions. However, the energy barrier to switching between Bloch chiralities does depend on the sense of rotation, which is dictated by the direction of the driving field. Our analysis of steady-state Dzyaloshinskii domain wall dynamics culminates in a switching diagram akin to the Stoner$-$Wohlfarth astroid, revealing the existence of both monochiral and multichiral Bloch regimes. Furthermore, we discuss recent theory of vertical Bloch line$-$mediated Bloch chirality selection in the precessional regime and extend these arguments to lower driving fields. This work establishes that applied magnetic fields can be used to dynamically switch between the chiral Bloch states of domain walls and skyrmions as indicated by this new Dzyaloshinskii astroid.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا