A Geospatial Functional Model For OCO-2 Data with Application on Imputation and Land Fraction Estimation


Abstract in English

Data from NASAs Orbiting Carbon Observatory-2 (OCO-2) satellite is essential to many carbon management strategies. A retrieval algorithm is used to estimate CO2 concentration using the radiance data measured by OCO-2. However, due to factors such as cloud cover and cosmic rays, the spatial coverage of the retrieval algorithm is limited in some areas of critical importance for carbon cycle science. Mixed land/water pixels along the coastline are also not used in the retrieval processing due to the lack of valid ancillary variables including land fraction. We propose an approach to model spatial spectral data to solve these two problems by radiance imputation and land fraction estimation. The spectral observations are modeled as spatially indexed functional data with footprint-specific parameters and are reduced to much lower dimensions by functional principal component analysis. The principal component scores are modeled as random fields to account for the spatial dependence, and the missing spectral observations are imputed by kriging the principal component scores. The proposed method is shown to impute spectral radiance with high accuracy for observations over the Pacific Ocean. An unmixing approach based on this model provides much more accurate land fraction estimates in our validation study along Greece coastlines.

Download