Unraveling S&P500 stock volatility and networks -- An encoding-and-decoding approach


Abstract in English

Volatility of financial stock is referring to the degree of uncertainty or risk embedded within a stocks dynamics. Such risk has been received huge amounts of attention from diverse financial researchers. By following the concept of regime-switching model, we proposed a non-parametric approach, named encoding-and-decoding, to discover multiple volatility states embedded within a discrete time series of stock returns. The encoding is performed across the entire span of temporal time points for relatively extreme events with respect to a chosen quantile-based threshold. As such the return time series is transformed into Bernoulli-variable processes. In the decoding phase, we computationally seek for locations of change points via estimations based on a new searching algorithm conjunction to the Bayesian information criterion applied on the observed collection of recurrence times upon the binary process. Besides the independence required for building the Geometric distributional likelihood function, the proposed approach can functionally partition the entire return time series into a collection of homogeneous segments without any assumptions of dynamic structure and underlying distributions. In the numerical experiments, our approach is found favorably compared with Viterbis under Hidden Markov Model (HMM) settings. In the real data applications, volatility dynamics of every single stock of S&P500 are computed and revealed. Then, a non-linear dependency of any stock-pair is derived by measuring through concurrent volatility states. Finally, various networks dealing with distinct financial implications are consequently established to represent different aspects of global connectivity among all stocks in S&P500.

Download