Do you want to publish a course? Click here

Generating Black-Box Adversarial Examples in Sparse Domain

164   0   0.0 ( 0 )
 Added by Hadi Zanddizari
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Applications of machine learning (ML) models and convolutional neural networks (CNNs) have been rapidly increased. Although ML models provide high accuracy in many applications, recent investigations show that such networks are highly vulnerable to adversarial attacks. The black-box adversarial attack is one type of attack that the attacker does not have any knowledge about the model or the training dataset. In this paper, we propose a novel approach to generate a black-box attack in sparse domain whereas the most important information of an image can be observed. Our investigation shows that large sparse components play a critical role in the performance of the image classifiers. Under this presumption, to generate adversarial example, we transfer an image into a sparse domain and put a threshold to choose only k largest components. In contrast to the very recent works that randomly perturb k low frequency (LoF) components, we perturb k largest sparse (LaS)components either randomly (query-based) or in the direction of the most correlated sparse signal from a different class. We show that LaS components contain some middle or higher frequency components information which can help us fool the classifiers with a fewer number of queries. We also demonstrate the effectiveness of this approach by fooling the TensorFlow Lite (TFLite) model of Google Cloud Vision platform. Mean squared error (MSE) and peak signal to noise ratio (PSNR) are used as quality metrics. We present a theoretical proof to connect these metrics to the level of perturbation in the sparse domain. We tested our adversarial examples to the state-of-the-art CNNs and support vector machine (SVM) classifiers on color and grayscale image datasets. The results show the proposed method can highly increase the misclassification rate of the classifiers.



rate research

Read More

Powerful adversarial attack methods are vital for understanding how to construct robust deep neural networks (DNNs) and for thoroughly testing defense techniques. In this paper, we propose a black-box adversarial attack algorithm that can defeat both vanilla DNNs and those generated by various defense techniques developed recently. Instead of searching for an optimal adversarial example for a benign input to a targeted DNN, our algorithm finds a probability density distribution over a small region centered around the input, such that a sample drawn from this distribution is likely an adversarial example, without the need of accessing the DNNs internal layers or weights. Our approach is universal as it can successfully attack different neural networks by a single algorithm. It is also strong; according to the testing against 2 vanilla DNNs and 13 defended ones, it outperforms state-of-the-art black-box or white-box attack methods for most test cases. Additionally, our results reveal that adversarial training remains one of the best defense techniques, and the adversarial examples are not as transferable across defended DNNs as them across vanilla DNNs.
Deep neural networks (DNNs) are known for their vulnerability to adversarial examples. These are examples that have undergone small, carefully crafted perturbations, and which can easily fool a DNN into making misclassifications at test time. Thus far, the field of adversarial research has mainly focused on image models, under either a white-box setting, where an adversary has full access to model parameters, or a black-box setting where an adversary can only query the target model for probabilities or labels. Whilst several white-box attacks have been proposed for video models, black-box video attacks are still unexplored. To close this gap, we propose the first black-box video attack framework, called V-BAD. V-BAD utilizes tentative perturbations transferred from image models, and partition-based rectifications found by the NES on partitions (patches) of tentative perturbations, to obtain good adversarial gradient estimates with fewer queries to the target model. V-BAD is equivalent to estimating the projection of an adversarial gradient on a selected subspace. Using three benchmark video datasets, we demonstrate that V-BAD can craft both untargeted and targeted attacks to fool two state-of-the-art deep video recognition models. For the targeted attack, it achieves $>$93% success rate using only an average of $3.4 sim 8.4 times 10^4$ queries, a similar number of queries to state-of-the-art black-box image attacks. This is despite the fact that videos often have two orders of magnitude higher dimensionality than static images. We believe that V-BAD is a promising new tool to evaluate and improve the robustness of video recognition models to black-box adversarial attacks.
Deep neural networks are powerful and popular learning models that achieve state-of-the-art pattern recognition performance on many computer vision, speech, and language processing tasks. However, these networks have also been shown susceptible to carefully crafted adversarial perturbations which force misclassification of the inputs. Adversarial examples enable adversaries to subvert the expected system behavior leading to undesired consequences and could pose a security risk when these systems are deployed in the real world. In this work, we focus on deep convolutional neural networks and demonstrate that adversaries can easily craft adversarial examples even without any internal knowledge of the target network. Our attacks treat the network as an oracle (black-box) and only assume that the output of the network can be observed on the probed inputs. Our first attack is based on a simple idea of adding perturbation to a randomly selected single pixel or a small set of them. We then improve the effectiveness of this attack by carefully constructing a small set of pixels to perturb by using the idea of greedy local-search. Our proposed attacks also naturally extend to a stronger notion of misclassification. Our extensive experimental results illustrate that even these elementary attacks can reveal a deep neural networks vulnerabilities. The simplicity and effectiveness of our proposed schemes mean that they could serve as a litmus test for designing robust networks.
Neural networks are known to be vulnerable to carefully crafted adversarial examples, and these malicious samples often transfer, i.e., they remain adversarial even against other models. Although great efforts have been delved into the transferability across models, surprisingly, less attention has been paid to the cross-task transferability, which represents the real-world cybercriminals situation, where an ensemble of different defense/detection mechanisms need to be evaded all at once. In this paper, we investigate the transferability of adversarial examples across a wide range of real-world computer vision tasks, including image classification, object detection, semantic segmentation, explicit content detection, and text detection. Our proposed attack minimizes the ``dispersion of the internal feature map, which overcomes existing attacks limitation of requiring task-specific loss functions and/or probing a target model. We conduct evaluation on open source detection and segmentation models as well as four different computer vision tasks provided by Google Cloud Vision (GCV) APIs, to show how our approach outperforms existing attacks by degrading performance of multiple CV tasks by a large margin with only modest perturbations linf=16.
Deep neural networks (DNNs) have been shown to be vulnerable against adversarial examples (AEs), which are maliciously designed to cause dramatic model output errors. In this work, we reveal that normal examples (NEs) are insensitive to the fluctuations occurring at the highly-curved region of the decision boundary, while AEs typically designed over one single domain (mostly spatial domain) exhibit exorbitant sensitivity on such fluctuations. This phenomenon motivates us to design another classifier (called dual classifier) with transformed decision boundary, which can be collaboratively used with the original classifier (called primal classifier) to detect AEs, by virtue of the sensitivity inconsistency. When comparing with the state-of-the-art algorithms based on Local Intrinsic Dimensionality (LID), Mahalanobis Distance (MD), and Feature Squeezing (FS), our proposed Sensitivity Inconsistency Detector (SID) achieves improved AE detection performance and superior generalization capabilities, especially in the challenging cases where the adversarial perturbation levels are small. Intensive experimental results on ResNet and VGG validate the superiority of the proposed SID.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا