No Arabic abstract
The earliest phases of star formation are characterised by intense mass accretion from the circumstellar disk to the central star. One group of young stellar objects, the FU Orionis-type stars exhibit accretion rate peaks accompanied by bright eruptions. The occurrence of these outbursts might solve the luminosity problem of protostars, play a key role in accumulating the final star mass, and have a significant effect on the parameters of the envelope and the disk. In the framework of the Structured Accretion Disks ERC project, we are conducting a systematic investigation of these sources with millimeter interferometry to examine whether they represent normal young stars in exceptional times or they are unusual objects. Our results show that FU Orionis-type stars can be similar to both Class I and Class II systems and may be in a special evolutionary phase between the two classes with their infall-driven episodic eruptions being the main driving force of the transition.
Aims: Our goal is to investigate how the strength of episodic accretion bursts depends on eccentricity. Methods: We investigate the binary trigger hypothesis in longer-period (>20yr) binaries by carrying out three-dimensional magnetohydrodynamical (MHD) simulations of the formation of low-mass binary stars down to final separations of $sim$10$au$, including the effects of gas turbulence and magnetic fields. We ran two simulations with an initial turbulent gas core of one solar mass each and two different initial turbulent Mach numbers, M = 0.1 and M=0.2, for 6500yr after protostar formation. Results: We observe bursts of accretion at periastron during the early stages when the eccentricity of the binary system is still high. We find that this correlation between bursts of accretion and passing periastron breaks down at later stages because of the gradual circularisation of the orbits. For eccentricities greater than e=0.2, we observe episodic accretion triggered near periastron. However, we do not find any strong correlation between the strength of episodic accretion and eccentricity. The strength of accretion is defined as the ratio of the burst accretion rate to the quiescent accretion rate.We determine that accretion events are likely triggered by torques between the rotation of the circumstellar disc and the approaching binary stars. We compare our results with observational data of episodic accretion in short-period binaries and find good agreement between our simulations and the observations. Conclusions: We conclude that episodic accretion is a universal mechanism operating in eccentric young binary-star systems, independent of separation, and it should be observable in long-period binaries as well as in short-period binaries. Nevertheless, the strength depends on the torques and hence the separation at periastron.
Context. FU Orionis is the archetypal FUor star, a subclass of young stellar object (YSO) that undergo rapid brightening events, often gaining 4-6 magnitudes on timescales of days. This brightening is often associated with a massive increase in accretion; one of the most ubiquitous processes in astrophysics from planets and stars to super-massive black holes. We present multi-band interferometric observations of the FU Ori circumstellar environment, including the first J-band interferometric observations of a YSO. Aims. We investigate the morphology and temperature gradient of the inner-most regions of the accretion disk around FU Orionis. We aim to characterise the heating mechanisms of the disk and comment on potential outburst triggering processes. Methods. Recent upgrades to the MIRC-X instrument at the CHARA array allowed the first dual-band J and H observations of YSOs.Using baselines up to 331 m, we present high angular resolution data of a YSO covering the near-infrared bands J, H, and K. The unprecedented spectral range of the data allows us to apply temperature gradient models to the innermost regions of FU Ori. Results. We spatially resolve the innermost astronomical unit of the disk and determine the exponent of the temperature gradient of the inner disk to $T=r^{-0.74pm0.02}$. This agrees with theoretical work that predicts $T = r^{-0.75}$ for actively accreting, steady state disks, a value only obtainable through viscous heating within the disk. We find a disk which extends down to the stellar surface at $0.015pm0.007$ au where the temperature is found to be $5800pm700$ K indicating boundary layer accretion. We find a disk inclined at $32pm4^circ$ with a minor-axis position angle of $34pm11^circ$.
FUors are young stellar objects experiencing large optical outbursts due to highly enhanced accretion from the circumstellar disk onto the star. FUors are often surrounded by massive envelopes, which play a significant role in the outburst mechanism. Conversely, the subsequent eruptions might gradually clear up the obscuring envelope material and drive the protostar on its way to become a disk-only T Tauri star. Here we present an APEX $^{12}$CO and $^{13}$CO survey of eight southern and equatorial FUors. We measure the mass of the gaseous material surrounding our targets. We locate the source of the CO emission and derive physical parameters for the envelopes and outflows, where detected. Our results support the evolutionary scenario where FUors represent a transition phase from envelope-surrounded protostars to classical T Tauri stars.
We report on the source Gaia 17bpi and identify it as a new, ongoing FU Ori type outburst, associated with a young stellar object. The optical lightcurve from Gaia exhibited a 3.5 mag rise with the source appearing to plateau in mid/late 2018. Mid-infrared observations from NEOWISE also show a $>$3 mag rise that occurred in two stages, with the second one coincident with the optical brightening, and the first one preceding the optical brightening by $sim$1.5 years. We model the outburst as having started between October and December of 2014. This wavelength-dependent aspect of young star accretion-driven outbursts has never been documented before. Both the mid-infrared and the optical colors of the object become bluer as the outburst proceeds. Optical spectroscopic characteristics in the outburst phase include: a GK-type absorption spectrum, strong wind/outflow in e.g. Mgb, NaD, H$alpha$, KI, OI, and CaII profiles, and detection of LiI 6707 AA. The infrared spectrum in the outburst phase is similar to that of an M-type spectrum, notably exhibiting prominent $H_2O$ and $^{12}$CO (2-0) bandhead absorption in the K-band, and likely HeI wind in the Y-band. The new FU Ori source Gaia 17bpi is associated with a little-studied dark cloud in the galactic plane, located at a distance of 1.27 kpc.
In the last twenty years, the topic of episodic accretion has gained significant interest in the star formation community. It is now viewed as a common, though still poorly understood, phenomenon in low-mass star formation. The FU Orionis objects (FUors) are long-studied examples of this phenomenon. FUors are believed to undergo accretion outbursts during which the accretion rate rapidly increases from typically $10^{-7}$ to a few $10^{-4}$ $M_odot$ yr$^{-1}$, and remains elevated over several decades or more. EXors, a loosely defined class of pre-main sequence stars, exhibit shorter and repetitive outbursts, associated with lower accretion rates. The relationship between the two classes, and their connection to the standard pre-main sequence evolutionary sequence, is an open question: do they represent two distinct classes, are they triggered by the same physical mechanism, and do they occur in the same evolutionary phases? Over the past couple of decades, many theoretical and numerical models have been developed to explain the origin of FUor and EXor outbursts. In parallel, such accretion bursts have been detected at an increasing rate, and as observing techniques improve each individual outburst is studied in increasing detail. We summarize key observations of pre-main sequence star outbursts, and review the latest thinking on outburst triggering mechanisms, the propagation of outbursts from star/disk to disk/jet systems, the relation between classical EXors and FUors, and newly discovered outbursting sources -- all of which shed new light on episodic accretion. We finally highlight some of the most promising directions for this field in the near- and long-term.