Do you want to publish a course? Click here

Experimental demonstration of indefinite causal order induced quantum heat extraction

118   0   0.0 ( 0 )
 Added by Huan Cao
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the classical world, physical events always happen in a fixed causal order. However, it was recently revealed that quantum mechanics allows events to occur with indefinite causal order (ICO). In this study, we use an optical quantum switch to experimentally investigate the application of ICO in thermodynamic tasks. Specifically, we demonstrate that when a working system interacts with two thermal reservoirs in an ICO, non-classical heat transfer can be observed, even through they share the same temperature. Using such a process, we simulate an ICO refrigeration cycle and investigate its properties. We also show that by passing through the ICO channel multiple times, one can extract more heat per cycle and thus obtain a higher refrigeration efficiency. Our results provide inspirations for further improving the efficiency of quantum thermodynamic tasks and shed new light on the development of a new class of thermodynamic resource theories without presumed causal order.



rate research

Read More

Investigating the role of causal order in quantum mechanics has recently revealed that the causal distribution of events may not be a-priori well-defined in quantum theory. While this has triggered a growing interest on the theoretical side, creating processes without a causal order is an experimental task. Here we report the first decisive demonstration of a process with an indefinite causal order. To do this, we quantify how incompatible our set-up is with a definite causal order by measuring a causal witness. This mathematical object incorporates a series of measurements which are designed to yield a certain outcome only if the process under examination is not consistent with any well-defined causal order. In our experiment we perform a measurement in a superposition of causal orders - without destroying the coherence - to acquire information both inside and outside of a causally non-ordered process. Using this information, we experimentally determine a causal witness, demonstrating by almost seven standard deviations that the experimentally implemented process does not have a definite causal order.
In quantum mechanics events can happen in no definite causal order: in practice this can be verified by measuring a causal witness, in the same way that an entanglement witness verifies entanglement. Indefinite causal order can be observed in a quantum switch, where two operations act in a quantum superposition of the two possible orders. Here we realise a photonic quantum switch, where polarisation coherently controls the order of two operations, $hat{A}$ and $hat{B}$, on the transverse spatial mode of the photons. Our setup avoids the limitations of earlier implementations: the operations cannot be distinguished by spatial or temporal position. We show that our quantum switch has no definite causal order, by constructing a causal witness and measuring its value to be 18 standard deviations beyond the definite-order bound.
One of the most fundamental open problems in physics is the unification of general relativity and quantum theory to a theory of quantum gravity. An aspect that might become relevant in such a theory is that the dynamical nature of causal structure present in general relativity displays quantum uncertainty. This may lead to a phenomenon known as indefinite or quantum causal structure, as captured by the process matrix framework. Due to the generality of that framework, however, for many process matrices there is no clear physical interpretation. A popular approach towards a quantum theory of gravity is the Page-Wootters formalism, which associates to time a Hilbert space structure similar to spatial position. By explicitly introducing a quantum clock, it allows to describe time-evolution of systems via correlations between this clock and said systems encoded in history states. In this paper we combine the process matrix framework with a generalization of the Page-Wootters formalism in which one considers several observers, each with their own discrete quantum clock. We describe how to extract process matrices from scenarios involving such observers with quantum clocks, and analyze their properties. The description via a history state with multiple clocks imposes constraints on the physical implementation of process matrices and on the perspectives of the observers as described via causal reference frames. While it allows for describing scenarios where different definite causal orders are coherently controlled, we explain why certain non-causal processes might not be implementable within this setting.
To study which are the most general causal structures which are compatible with local quantum mechanics, Oreshkov et al. introduced the notion of a process: a resource shared between some parties that allows for quantum communication between them without a predetermined causal order. These processes can be used to perform several tasks that are impossible in standard quantum mechanics: they allow for the violation of causal inequalities, and provide an advantage for computational and communication complexity. Nonetheless, no process that can be used to violate a causal inequality is known to be physically implementable. There is therefore considerable interest in determining which processes are physical and which are just mathematical artefacts of the framework. Here we make the first step in this direction, by proposing a purification postulate: processes are physical only if they are purifiable. We derive necessary conditions for a process to be purifiable, and show that several known processes do not satisfy them.
Realization of indefinite causal order (ICO), a theoretical possibility that even causal relations between physical events can be subjected to quantum superposition, apart from its general significance for the fundamental physics research, would also enable quantum information processing that outperforms protocols in which the underlying causal structure is definite. In this paper, we start with a proposition that an observer in a state of quantum superposition of being at two different relative distances from the event horizon of a black hole, effectively resides in ICO space-time generated by the black hole. By invoking the fact that the near-horizon geometry of a Schwarzschild black hole is that of a Rindler space-time, we propose a way to simulate an observer in ICO space-time by a Rindler observer in a state of superposition of having two different proper accelerations. By extension, a pair of Rindler observers with entangled proper accelerations simulates a pair of entangled ICO observers. Moreover, these Rindler-systems might have a plausible experimental realization by means of optomechanical resonators.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا