Do you want to publish a course? Click here

The Devils in the Point Clouds: Studying the Robustness of Point Cloud Convolutions

249   0   0.0 ( 0 )
 Added by Xingyi Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Recently, there has been a significant interest in performing convolution over irregularly sampled point clouds. Since point clouds are very different from regular raster images, it is imperative to study the generalization of the convolution networks more closely, especially their robustness under variations in scale and rotations of the input data. This paper investigates different variants of PointConv, a convolution network on point clouds, to examine their robustness to input scale and rotation changes. Of the variants we explored, two are novel and generated significant improvements. The first is replacing the multilayer perceptron based weight function with much simpler third degree polynomials, together with a Sobolev norm regularization. Secondly, for 3D datasets, we derive a novel viewpoint-invariant descriptor by utilizing 3D geometric properties as the input to PointConv, in addition to the regular 3D coordinates. We have also explored choices of activation functions, neighborhood, and subsampling methods. Experiments are conducted on the 2D MNIST & CIFAR-10 datasets as well as the 3D SemanticKITTI & ScanNet datasets. Results reveal that on 2D, using third degree polynomials greatly improves PointConvs robustness to scale changes and rotations, even surpassing traditional 2D CNNs for the MNIST dataset. On 3D datasets, the novel viewpoint-invariant descriptor significantly improves the performance as well as robustness of PointConv. We achieve the state-of-the-art semantic segmentation performance on the SemanticKITTI dataset, as well as comparable performance with the current highest framework on the ScanNet dataset among point-based approaches.



rate research

Read More

109 - Chenxi Xiao , Juan Wachs 2020
Three dimensional (3D) object recognition is becoming a key desired capability for many computer vision systems such as autonomous vehicles, service robots and surveillance drones to operate more effectively in unstructured environments. These real-time systems require effective classification methods that are robust to various sampling resolutions, noisy measurements, and unconstrained pose configurations. Previous research has shown that points sparsity, rotation and positional inherent variance can lead to a significant drop in the performance of point cloud based classification techniques. However, neither of them is sufficiently robust to multifactorial variance and significant sparsity. In this regard, we propose a novel approach for 3D classification that can simultaneously achieve invariance towards rotation, positional shift, scaling, and is robust to point sparsity. To this end, we introduce a new feature that utilizes graph structure of point clouds, which can be learned end-to-end with our proposed neural network to acquire a robust latent representation of the 3D object. We show that such latent representations can significantly improve the performance of object classification and retrieval tasks when points are sparse. Further, we show that our approach outperforms PointNet and 3DmFV by 35.0% and 28.1% respectively in ModelNet 40 classification tasks using sparse point clouds of only 16 points under arbitrary SO(3) rotation.
Discrete point cloud objects lack sufficient shape descriptors of 3D geometries. In this paper, we present a novel method for aggregating hypothetical curves in point clouds. Sequences of connected points (curves) are initially grouped by taking guided walks in the point clouds, and then subsequently aggregated back to augment their point-wise features. We provide an effective implementation of the proposed aggregation strategy including a novel curve grouping operator followed by a curve aggregation operator. Our method was benchmarked on several point cloud analysis tasks where we achieved the state-of-the-art classification accuracy of 94.2% on the ModelNet40 classification task, instance IoU of 86.8 on the ShapeNetPart segmentation task, and cosine error of 0.11 on the ModelNet40 normal estimation task.
Autonomous vehicles operate in highly dynamic environments necessitating an accurate assessment of which aspects of a scene are moving and where they are moving to. A popular approach to 3D motion estimation, termed scene flow, is to employ 3D point cloud data from consecutive LiDAR scans, although such approaches have been limited by the small size of real-world, annotated LiDAR data. In this work, we introduce a new large-scale dataset for scene flow estimation derived from corresponding tracked 3D objects, which is $sim$1,000$times$ larger than previous real-world datasets in terms of the number of annotated frames. We demonstrate how previous works were bounded based on the amount of real LiDAR data available, suggesting that larger datasets are required to achieve state-of-the-art predictive performance. Furthermore, we show how previous heuristics for operating on point clouds such as down-sampling heavily degrade performance, motivating a new class of models that are tractable on the full point cloud. To address this issue, we introduce the FastFlow3D architecture which provides real time inference on the full point cloud. Additionally, we design human-interpretable metrics that better capture real world aspects by accounting for ego-motion and providing breakdowns per object type. We hope that this dataset may provide new opportunities for developing real world scene flow systems.
98 - Tianfang Zhu , Yue Guan , Anan Li 2021
Augmentation can benefit point cloud learning due to the limited availability of large-scale public datasets. This paper proposes a mix-up augmentation approach, PointManifoldCut, which replaces the neural network embedded points, rather than the Euclidean space coordinates. This approach takes the advantage that points at the higher levels of the neural network are already trained to embed its neighbors relations and mixing these representation will not mingle the relation between itself and its label. This allows to regularize the parameter space as the other augmentation methods but without worrying about the proper label of the replaced points. The experiments show that our proposed approach provides a competitive performance on point cloud classification and segmentation when it is combined with the cutting-edge vanilla point cloud networks. The result shows a consistent performance boosting compared to other state-of-the-art point cloud augmentation method, such as PointMixup and PointCutMix. The code of this paper is available at: https://github.com/fun0515/PointManifoldCut.
LiDAR point clouds contain measurements of complicated natural scenes and can be used to update digital elevation models, glacial monitoring, detecting faults and measuring uplift detecting, forest inventory, detect shoreline and beach volume changes, landslide risk analysis, habitat mapping, and urban development, among others. A very important application is the classification of the 3D cloud into elementary classes. For example, it can be used to differentiate between vegetation, man-made structures, and water. Our goal is to present a preliminary comparison study for the classification of 3D point cloud LiDAR data that includes several types of feature engineering. In particular, we demonstrate that providing context by augmenting each point in the LiDAR point cloud with information about its neighboring points can improve the performance of downstream learning algorithms. We also experiment with several dimension reduction strategies, ranging from Principal Component Analysis (PCA) to neural network-based auto-encoders, and demonstrate how they affect classification performance in LiDAR point clouds. For instance, we observe that combining feature engineering with a dimension reduction a method such as PCA, there is an improvement in the accuracy of the classification with respect to doing a straightforward classification with the raw data.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا