Do you want to publish a course? Click here

Quasinormal modes and Purcell factors of coupled loss-gain resonators and index-modulated ring resonators near exceptional points

114   0   0.0 ( 0 )
 Added by Juanjuan Ren
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We first present a quasinormal mode (QNM) theory for coupled loss-gain resonators working near an exceptional point. Assuming linear media, which can be fully quantified using the complex pole properties of the QNMs, we show how the QNMs yield a quantitatively good model to a full dipole spontaneous emission response in Maxwells equations at various spatial positions and frequencies (linear response). We also develop a highly accurate and intuitive QNM coupled-mode theory, which can be used to rigorously model such systems using only the QNMs of the bare resonators, where the hybrid QNMs of the complete system are automatically obtained. Near a lossy exceptional point, we analytically show how the QNMs yield a Lorentzian-like and a Lorentzian-squared-like response for the spontaneous emission lineshape, consistent with other works. However, using rigorous analytical and numerical solutions for microdisk resonators, we demonstrate that the general lineshapes are far richer than what has been previously predicted. Indeed, the classical picture of spontaneous emission can take on a wide range of positive and negative Purcell factors from the hybrid modes of the coupled loss-gain system. These negative Purcell factors are unphysical and signal a clear breakdown of the classical dipole picture of spontaneous emission in such media, though the negative local density of states is correct. We also show the rich spectral features of the Green function propagators, which can be used to model various physical observables. Second, we present a QNM approach to model index modulated ring resonators working near an exceptional point and show unusual chiral power flow from linearly polarized emitters, in agreement with recent experiments, which is quantitatively explained without invoking the interpretation of a missing dimension (the Jordan vector) and a decoupling from the cavity eigenmodes.



rate research

Read More

We present study of the dynamics of two ring waveguide structure with space dependent coupling, linear gain and nonlinear absorption - the system that can be implemented in polariton condensates, optical waveguides, and nanocavities. We show that by turning on and off local coupling between rings one can selectively generate permanent vortex in one of the rings. We find that due to the modulation instability it is also possible to observe several complex nonlinear phenomena, including spontaneous symmetry breaking, stable inhomogeneous states with interesting structure of currents flowing between rings, generation of stable symmetric and asymmetric circular flows with various vorticities, etc. The latter can be created in pairs (for relatively narrow coupling length) or as single vortex in one of the channels, that is later alternating between channels.
We present a bi-orthogonal approach for modeling the response of localized electromagnetic resonators using quasinormal modes, which represent the natural, dissipative eigenmodes of the system with complex frequencies. For many problems of interest in optics and nanophotonics, the quasinormal modes constitute a powerful modeling tool, and the bi-orthogonal approach provides a coherent, precise, and accessible derivation of the associated theory, enabling an illustrative connection between different modeling approaches that exist in the literature.
We present a transmission line theory of exceptional points of degeneracy (EPD) in coupled-mode guiding structures, i.e., a theory that illustrates the characteristics of coupled electromagnetic modes under a special dispersion degeneracy condition, yet unexplored in the contest of gain and loss. We demonstrate the concept of Parity-Time ($cal{PT}$)-symmetry in coupled uniform waveguides with balanced and symmetric gain and loss and how this condition is associated with a second order EPD. We show that by introducing gain into naturally lossy structures provides for the conditions whereby exceptional points of non-Hermitian degeneracies can be manifested, such as in $cal{PT}$- symmetric structures. Furthermore, we also demonstrate that $cal{PT}$- symmetry, despite being the method often suggested for obtaining non-Hermitian degeneracies at optical frequencies, is not a necessary condition and indeed we show that EPD can be obtained with broken topological symmetry in uniform TLs. Operating near such special degeneracy conditions leads to potential performance enhancement in a variety of microwave and optical resonators, and devices such as distributed oscillators, including lasers, amplifiers, radiating arrays, pulse compressors, and Qswitching sensors.
We describe an efficient near-field to far-field transformation for optical quasinormal modes, which are the dissipative modes of open cavities and plasmonic resonators with complex eigenfrequencies. As an application of the theory, we show how one can compute the reservoir modes (or regularized quasinormal modes) outside the resonator, which are essential to use in both classical and quantum optics. We subsequently demonstrate how to efficiently compute the quantum optical parameters necessary in the theory of quantized quasinormal modes [Franke et al., Phys. Rev. Lett. 122, 213901 (2019)]. To confirm the accuracy of our technique, we directly compare with a Dyson equation approach currently used in the literature (in regimes where this is possible), and demonstrate several order of magnitude improvement for the calculation run times. We also introduce an efficient pole approximation for computing the quantized quasinormal mode parameters, since they require an integration over a range of frequencies. Using this approach, we show how to compute regularized quasinormal modes and quantum optical parameters for a full 3D metal dimer in under one minute on a standard desktop computer. Our technique is exemplified by studying the quasinormal modes of metal dimers and a hybrid structure consisting of a gold dimer on top of a photonic crystal beam. In the latter example, we show how to compute the quantum optical parameters that describe a pronounced Fano resonance, using structural geometries that cannot practically be solved using a Dyson equation approach. All calculations for the spontaneous emission rates are confirmed with full-dipole calculations in Maxwells equations and are shown to be in excellent agreement.
The concept of synthetic dimensions in photonics has attracted rapidly growing interest in the past few years. Among a variety of photonic systems, the ring resonator system under dynamic modulation has been investigated in depth both in theory and experiment, and has proven to be a powerful way to build synthetic frequency dimensions. In this tutorial, we start with a pedagogical introduction to the theoretical approaches in describing the dynamically modulated ring resonator system, and then review experimental methods in building such a system. Moreover, we discuss important physical phenomena in synthetic dimensions, including nontrivial topological physics. Our tutorial provides a pathway towards studying the dynamically modulated ring resonator system, understanding synthetic dimensions in photonics, and discusses future prospects for both fundamental research and practical applications using synthetic dimensions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا