Do you want to publish a course? Click here

Coherent manipulation of an Andreev spin qubit

162   0   0.0 ( 0 )
 Added by Max Hays
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Two promising architectures for solid-state quantum information processing are electron spins in semiconductor quantum dots and the collective electromagnetic modes of superconducting circuits. In some aspects, these two platforms are dual to one another: superconducting qubits are more easily coupled but are relatively large among quantum devices $(simmathrm{mm})$, while electrostatically-confined electron spins are spatially compact ($sim mathrm{mu m}$) but more complex to link. Here we combine beneficial aspects of both platforms in the Andreev spin qubit: the spin degree of freedom of an electronic quasiparticle trapped in the supercurrent-carrying Andreev levels of a Josephson semiconductor nanowire. We demonstrate coherent spin manipulation by combining single-shot circuit-QED readout and spin-flipping Raman transitions, finding a spin-flip time $T_S = 17~mathrm{mu s}$ and a spin coherence time $T_{2E}=52~mathrm{ns}$. These results herald a new spin qubit with supercurrent-based circuit-QED integration and further our understanding and control of Andreev levels -- the parent states of Majorana zero modes -- in semiconductor-superconductor heterostructures.



rate research

Read More

88 - C. Janvier 2015
Coherent control of quantum states has been demonstrated in a variety of superconducting devices. In all these devices, the variables that are manipulated are collective electromagnetic degrees of freedom: charge, superconducting phase, or flux. Here, we demonstrate the coherent manipulation of a quantum system based on Andreev bound states, which are microscopic quasiparticle states inherent to superconducting weak links. Using a circuit quantum electrodynamics setup we perform single-shot readout of this Andreev qubit. We determine its excited state lifetime and coherence time to be in the microsecond range. Quantum jumps and parity switchings are observed in continuous measurements. In addition to possible quantum information applications, such Andreev qubits are a testbed for the physics of single elementary excitations in superconductors.
Initialization, manipulation, and measurement of a three-spin qubit are demonstrated using a few-electron triple quantum dot, where all operations can be driven by tuning the nearest-neighbor exchange interaction. Multiplexed reflectometry, applied to two nearby charge sensors, allows for qubit readout. Decoherence is found to be consistent with predictions based on gate voltage noise with a uniform power spectrum. The theory of the exchange-only qubit is developed and it is shown that initialization of only two spins suffices for operation. Requirements for full multi-qubit control using only exchange and electrostatic interactions are outlined.
Nitrogen vacancy (NV) centers, optically-active atomic defects in diamond, have attracted tremendous interest for quantum sensing, network, and computing applications due to their excellent quantum coherence and remarkable versatility in a real, ambient environment. One of the critical challenges to develop NV-based quantum operation platforms results from the difficulty to locally address the quantum spin states of individual NV spins in a scalable, energy-efficient manner. Here, we report electrical control of the coherent spin rotation rate of a single-spin qubit in NV-magnet based hybrid quantum systems. By utilizing electrically generated spin currents, we are able to achieve efficient tuning of magnetic damping and the amplitude of the dipole fields generated by a micrometer-sized resonant magnet, enabling electrical control of the Rabi oscillation frequency of NV spins. Our results highlight the potential of NV centers in designing functional hybrid solid-state systems for next-generation quantum-information technologies. The demonstrated coupling between the NV centers and the propagating spin waves harbored by a magnetic insulator further points to the possibility to establish macroscale entanglement between distant spin qubits.
Coupling Majorana fermion excitations to coherent external fields is an important stage towards their manipulation and detection. We analyse the charge and transmon regimes of a topological nano-wire embedded within a Cooper-Pair-Box, where the superconducting phase difference is coupled to the zero energy parity states that arise from Majorana quasi-particles. We show that at special gate bias points, the photon-qubit coupling can be switched off via quantum interference, and in other points it is exponentially dependent on the control parameter $E_J/E_C$. As well as a probe for topological-superconductor excitations, we propose that this type of device could be used to realise a tunable high coherence four-level system in the superconducting circuits architecture.
374 - F. T. Vasko 2017
We consider dissipative dynamics of a flux qubit caused by 1/f noises, which act both on the shunting LC-contour and on the SQUID loop. These classical Gaussian noises modulate of the level splitting and of the tunnel coupling, respectively, and they are partially correlated. The transient evolution of qubit has been studied for the regimes: (a) the interwell incoherent tunneling, (b) the relaxation of interlevel population, and (c) the decoherence of the off-diagonal part of a density matrix. For all regimes, the relaxation rates and the frequency renormalization [for the case (c)] are analyzed versus the parameters of qubit and couplings to the noises applied. The fluctuation effects give a dominant contribution at tails of relaxation, so that the averaged dissipative dynamics is not valid there. The results obtained open a way for verification of the parameters of qubit-noise interaction and for minimization of coupling between qubit and environment. Under typical level of noises, the results are comparable to the recent experimental data on the population relaxation and on the incoherent interwell tunneling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا