No Arabic abstract
Red clump (RC) stars are one of the best stellar tracers of the structure of the Milky Way (MW) bulge. Here we report a new view of the double RC through luminosity and color distributions of RC stars in nine bulge fields ($l$ = 0.0$^{circ}$, $pm$4.5$^{circ}$; $b$ = -6.0$^{circ}$, -7.5$^{circ}$, -9.0$^{circ}$) from the Blanco DECam Bulge Survey (BDBS), which covers near-ultraviolet to near-infrared bandpasses. The bright and faint RCs show contrasting distributions in ($u-g$)$_{0}$ and ($u-i$)$_{0}$ colors but similar distributions in ($J-K_{s}$)$_{0}$ with a variation depending on the Galactic longitude, where the bright RC is typically redder than the faint RC. In particular, the RC stars are clearly divided into the bluer and redder populations when using the ($u-g$)$_{0}$ color (($u-g$)$_{0}$ $<$ 2.5 for the bluer RC; ($u-g$)$_{0}$ $ge$ 2.5 for the redder RC). The bluer stars show a single clump on the faint RC regime, whereas the redder stars form double clumps on both the bright and faint RCs. The bright clump of the redder stars is dominant in the positive longitude fields, while the faint clump of those red stars is significant at negative longitudes. We also confirm that the bluer and redder stars have different peak metallicity through comparison with spectroscopy ($Delta$[Fe/H] $sim$ 0.45 dex). Therefore, our results support a scenario whereby the MW bulge is composed of a spheroid of metal-poor stars and a boxy/peanut shape (X-shape) predominantly made up of metal-rich stars.
The Blanco DECam Bulge Survey (BDBS) imaged more than 200 square degrees of the Southern Galactic bulge using the ugrizY filters of the Dark Energy Camera, and produced point spread function photometry of approximately 250 million unique sources. In this paper, we present details regarding the construction and collation of survey catalogs, and also discuss the adopted calibration and dereddening procedures. Early science results are presented with a particular emphasis on the bulge metallicity distribution function and globular clusters. A key result is the strong correlation (sigma ~ 0.2 dex) between (u-i)o and [Fe/H] for bulge red clump giants. We utilized this relation to find that interior bulge fields may be well described by simple closed box enrichment models, but fields exterior to b ~ -6 degrees seem to require a secondary metal-poor component. Applying scal
The two red clumps (RCs) observed in the color-magnitude diagram of the Milky Way bulge is widely accepted as evidence for an X-shaped structure originated from the bar instability. A drastically different interpretation has been suggested, however, based on the He-enhanced multiple stellar population phenomenon as is observed in globular clusters (GCs). Because these two scenarios imply very different pictures on the formation of the bulge and elliptical galaxies, understanding the origin of the double RC is of crucial importance. Here we report our discovery that the stars in the two RCs show a significant (> 5.3 {sigma}) difference in CN-band strength, in stark contrast to that expected in the X-shaped bulge scenario. The difference in CN abundance and the population ratio between the two RCs are comparable to those observed in GCs between the first- and later generation stars. Since CN-strong stars trace a population with enhanced N, Na, and He abundances originated in GCs, this is direct evidence that the double RC is due to the multiple population phenomenon, and that a significant population of stars in the Milky Way bulge were assembled from disrupted proto-GCs. Our result also calls for the major revision of the 3D structure of the Milky Way bulge given that the current view is based on the previous interpretation of the double RC phenomenon.
The Blanco Dark Energy Camera (DECam) Bulge survey is a Vera Rubin Observatory (LSST) pathfinder imaging survey, spanning $sim 200$ sq. deg. of the Southern Galactic bulge, $-2^circ <$b$< -13^circ$ and $-11^circ <$l$ < +11^circ$. We have employed the CTIO-4m telescope and the Dark Energy Camera (DECam) to image a contiguous $sim 200$ sq. deg. region of the relatively less reddened Southern Galactic bulge, in SDSS $u$ + Pan-STARRS$grizy$. Optical photometry with its large colour baseline will be used to investigate the age and metallicity distributions of the major structures of the bulge. Included in the survey footprint are 26 globular clusters imaged in all passbands. Over much of the bulge, we have Gaia DR2 matching astrometry to $isim 18$, deep enough to reach the faint end of the red clump. This paper provides the background, scientific case, and description of the survey. We present an array of new reddening-corrected colour-magnitude diagrams that span the extent of Southern Galactic bulge. We argue that a population of massive stars in the blue loop evolutionary phase, proposed to lie in the bulge, are instead at $sim 2$ kpc from the Sun and likely red clump giants in the old disk. A bright red clump near $(l,b)=(+8^circ,-4^circ)$ may be a feature in the foreground disk, or related to the long bar reported in earlier work. We also report the first map of the blue horizontal branch population spanning the BDBS field of regard, and our data does not confirm the reality of a number of proposed globular clusters in the bulge.
Near the minor axis of the Galactic bulge, at latitudes b < -5 degrees, the red giant clump stars are split into two components along the line of sight. We investigate this split using the three fields from the ARGOS survey that lie on the minor axis at (l,b) = (0,-5), (0,-7.5), (0,-10) degrees. The separation is evident for stars with [Fe/H] > -0.5 in the two higher-latitude fields, but not in the field at b = -5 degrees. Stars with [Fe/H] < -0.5 do not show the split. We compare the spatial distribution and kinematics of the clump stars with predictions from an evolutionary N-body model of a bulge that grew from a disk via bar-related instabilities. The density distribution of the peanut-shaped model is depressed near its minor axis. This produces a bimodal distribution of stars along the line of sight through the bulge near its minor axis, very much as seen in our observations. The observed and modelled kinematics of the two groups of stars are also similar. We conclude that the split red clump of the bulge is probably a generic feature of boxy/peanut bulges that grew from disks, and that the disk from which the bulge grew had relatively few stars with [Fe/H] < -0.5
The Galactic bulge of the Milky Way is made up of stars with a broad range of metallicity, -3.0 < [Fe/H] < 1 dex. The mean of the Metallicity Distribution Function (MDF) decreases as a function of height z from the plane and, more weakly, with galactic radius. The most metal rich stars in the inner Galaxy are concentrated to the plane and the more metal poor stars are found predominantly further from the plane, with an overall vertical gradient in the mean of the MDF of about -0.45 dex/kpc. This vertical gradient is believed to reflect the changing contribution with height of different populations in the inner-most region of the Galaxy. The more metal rich stars of the bulge are part of the boxy/peanut structure and comprise stars in orbits which trace out the underlying X-shape. There is still a lack of consensus on the origin of the metal poor stars ([Fe/H] < -0.5) in the region of the bulge. Some studies attribute the more metal poor stars of the bulge to the thick disk and stellar halo that are present in the inner region, and other studies propose that the metal poor stars are a distinct old spheroid bulge population. Understanding the origin of the populations that make up the MDF of the bulge, and identifying if there is a unique bulge population which has formed separately from the disk and halo, has important consequences for identifying the relevant processes in the the formation and evolution of the Milky Way.