Luminous Compact Blue Galaxies (LCBGs) are compact, star-forming galaxies that are rarely observed in the local universe but abundant at z=1. This increase in LCBG number density over cosmic lookback time roughly follows the increase in the star formation rate density of the universe over the same period. We use publicly available data in the COSMOS field to study the evolution of the largest homogeneous sample of LCBGs to date by deriving their luminosity function in four redshift bins over the range $0.1leq~zleq1$. We find that over this redshift range, the characteristic luminosity (M$^{*}$) increases by $sim$0.2 mag, and the number density increases by a factor of four. While LCBGs make up only about $18%$ of galaxies more luminous than M$_{B}=-$18.5 at $zsim0.2$, they constitute roughly $54%$ at z$sim$0.9. The strong evolution in number density indicates that LCBGs are an important population of galaxies to study in order to better understand the decrease in the star formation rate density of the universe since $zsim1$.