Do you want to publish a course? Click here

Learning Kinematic Feasibility for Mobile Manipulation through Deep Reinforcement Learning

121   0   0.0 ( 0 )
 Added by Daniel Honerkamp
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Mobile manipulation tasks remain one of the critical challenges for the widespread adoption of autonomous robots in both service and industrial scenarios. While planning approaches are good at generating feasible whole-body robot trajectories, they struggle with dynamic environments as well as the incorporation of constraints given by the task and the environment. On the other hand, dynamic motion models in the action space struggle with generating kinematically feasible trajectories for mobile manipulation actions. We propose a deep reinforcement learning approach to learn feasible dynamic motions for a mobile base while the end-effector follows a trajectory in task space generated by an arbitrary system to fulfill the task at hand. This modular formulation has several benefits: it enables us to readily transform a broad range of end-effector motions into mobile applications, it allows us to use the kinematic feasibility of the end-effector trajectory as a dense reward signal and its modular formulation allows it to generalise to unseen end-effector motions at test time. We demonstrate the capabilities of our approach on multiple mobile robot platforms with different kinematic abilities and different types of wheeled platforms in extensive simulated as well as real-world experiments.



rate research

Read More

Manipulating deformable objects has long been a challenge in robotics due to its high dimensional state representation and complex dynamics. Recent success in deep reinforcement learning provides a promising direction for learning to manipulate deformable objects with data driven methods. However, existing reinforcement learning benchmarks only cover tasks with direct state observability and simple low-dimensional dynamics or with relatively simple image-based environments, such as those with rigid objects. In this paper, we present SoftGym, a set of open-source simulated benchmarks for manipulating deformable objects, with a standard OpenAI Gym API and a Python interface for creating new environments. Our benchmark will enable reproducible research in this important area. Further, we evaluate a variety of algorithms on these tasks and highlight challenges for reinforcement learning algorithms, including dealing with a state representation that has a high intrinsic dimensionality and is partially observable. The experiments and analysis indicate the strengths and limitations of existing methods in the context of deformable object manipulation that can help point the way forward for future methods development. Code and videos of the learned policies can be found on our project website.
We present a novel Deep Reinforcement Learning (DRL) based policy to compute dynamically feasible and spatially aware velocities for a robot navigating among mobile obstacles. Our approach combines the benefits of the Dynamic Window Approach (DWA) in terms of satisfying the robots dynamics constraints with state-of-the-art DRL-based navigation methods that can handle moving obstacles and pedestrians well. Our formulation achieves these goals by embedding the environmental obstacles motions in a novel low-dimensional observation space. It also uses a novel reward function to positively reinforce velocities that move the robot away from the obstacles heading direction leading to significantly lower number of collisions. We evaluate our method in realistic 3-D simulated environments and on a real differential drive robot in challenging dense indoor scenarios with several walking pedestrians. We compare our method with state-of-the-art collision avoidance methods and observe significant improvements in terms of success rate (up to 33% increase), number of dynamics constraint violations (up to 61% decrease), and smoothness. We also conduct ablation studies to highlight the advantages of our observation space formulation, and reward structure.
For robots to coexist with humans in a social world like ours, it is crucial that they possess human-like social interaction skills. Programming a robot to possess such skills is a challenging task. In this paper, we propose a Multimodal Deep Q-Network (MDQN) to enable a robot to learn human-like interaction skills through a trial and error method. This paper aims to develop a robot that gathers data during its interaction with a human and learns human interaction behaviour from the high-dimensional sensory information using end-to-end reinforcement learning. This paper demonstrates that the robot was able to learn basic interaction skills successfully, after 14 days of interacting with people.
Model-free deep reinforcement learning has been shown to exhibit good performance in domains ranging from video games to simulated robotic manipulation and locomotion. However, model-free methods are known to perform poorly when the interaction time with the environment is limited, as is the case for most real-world robotic tasks. In this paper, we study how maximum entropy policies trained using soft Q-learning can be applied to real-world robotic manipulation. The application of this method to real-world manipulation is facilitated by two important features of soft Q-learning. First, soft Q-learning can learn multimodal exploration strategies by learning policies represented by expressive energy-based models. Second, we show that policies learned with soft Q-learning can be composed to create new policies, and that the optimality of the resulting policy can be bounded in terms of the divergence between the composed policies. This compositionality provides an especially valuable tool for real-world manipulation, where constructing new policies by composing existing skills can provide a large gain in efficiency over training from scratch. Our experimental evaluation demonstrates that soft Q-learning is substantially more sample efficient than prior model-free deep reinforcement learning methods, and that compositionality can be performed for both simulated and real-world tasks.
We present a Virtual Kinematic Chain (VKC) perspective, a simple yet effective method, to improve task planning efficacy for mobile manipulation. By consolidating the kinematics of the mobile base, the arm, and the object being manipulated collectively as a whole, this novel VKC perspective naturally defines abstract actions and eliminates unnecessary predicates in describing intermediate poses. As a result, these advantages simplify the design of the planning domain and significantly reduce the search space and branching factors in solving planning problems. In experiments, we implement a task planner using Planning Domain Definition Language (PDDL) with VKC. Compared with conventional domain definition, our VKC-based domain definition is more efficient in both planning time and memory. In addition, abstract actions perform better in producing feasible motion plans and trajectories. We further scale up the VKC-based task planner in complex mobile manipulation tasks. Taken together, these results demonstrate that task planning using VKC for mobile manipulation is not only natural and effective but also introduces new capabilities.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا