No Arabic abstract
Nineteen classical superintegrable systems in two-dimensional non-Euclidean spaces are shown to possess hidden symmetries leading to their linearization. They are the two Perlick systems [A. Ballesteros, A. Enciso, F.J. Herranz and O. Ragnisco, Class. Quantum Grav. 25, 165005 (2008)], the Taub-NUT system [A. Ballesteros, A. Enciso, F.J. Herranz, O. Ragnisco, and D. Riglioni, SIGMA 7, 048 (2011)], and all the seventeen superintegrable systems for the four types of Darboux spaces as determined in [E.G. Kalnins, J.M. Kress, W. Miller, P. Winternitz, J. Math. Phys. 44, 5811--5848 (2003)].
A procedure to extend a superintegrable system into a new superintegrable one is systematically tested for the known systems on $mathbb E^2$ and $mathbb S^2$ and for a family of systems defined on constant curvature manifolds. The procedure results effective in many cases including Tremblay-Turbiner-Winternitz and three-particle Calogero systems.
We consider a relativistic charged particle in a background scalar field depending on both space and time. Poincare, dilation and special conformal symmetries of the field generate conserved quantities in the charge motion, and we exploit this to generate examples of superintegrable relativistic systems. We also show that the corresponding single-particle wavefunctions needed for the quantum scattering problem can be found exactly, by solving the Klein-Gordon equation.
Superintegrable systems on a symplectic manifold conventionally are considered. However, their definition implies a rather restrictive condition 2n=k+m where 2n is a dimension of a symplectic manifold, k is a dimension of a pointwise Lie algebra of a superintegrable system, and m is its corank. To solve this problem, we aim to consider partially superintegrable systems on Poisson manifolds where k+m is the rank of a compatible Poisson structure. The according extensions of the Mishchenko-Fomenko theorem on generalized action-angle coordinates is formulated.
2nd-order conformal superintegrable systems in $n$ dimensions are Laplace equations on a manifold with an added scalar potential and $2n - 1$ independent 2nd order conformal symmetry operators. They encode all the information about Helmholtz (eigenvalue) superintegrable systems in an efficient manner: there is a 1-1 correspondence between Laplace superintegrable systems and Stackel equivalence classes of Helmholtz superintegrable systems. In this paper we focus on superintegrable systems in two dimensions, $n = 2$, where there are 44 Helmholtz systems, corresponding to 12 Laplace systems. For each Laplace equation we determine the possible 2-variate polynomial subspaces that are invariant under the action of the Laplace operator, thus leading to families of polynomial eigenfunctions. We also study the behavior of the polynomial invariant subspaces under a Stackel transform. The principal new results are the details of the polynomial variables and the conditions on parameters of the potential corresponding to polynomial solutions. The hidden gl_3-algebraic structure is exhibited for the exact and quasi-exact systems. For physically meaningful solutions, the orthogonality properties and normalizability of the polynomials are presented as well. Finally, for all Helmholtz superintegrable solvable systems we give a unified construction of 1D and 2D quasi-exactly solvable potentials possessing polynomial solutions, and a construction of new 2D PT-symmetric potentials is established.
Superintegrable systems of 2nd order in 3 dimensions with exactly 3-parameter potentials are intriguing objects. Next to the nondegenerate 4-parameter potential systems they admit the maximum number of symmetry operators but their symmetry algebras dont close under commutation and not enough is known about their structure to give a complete classification. Some examples are known for which the 3-parameter system can be extended to a 4th order superintegrable system with a 4-parameter potential and 6 linearly independent symmetry generators. In this paper we use B^ocher contractions of the conformal Lie algebra $so(5,C)$ to itself to generate a large family of 3-parameter systems with 4th order extensions, on a variety of manifolds, and all from B^ocher contractions of a single generic system on the 3-sphere. We give a contraction scheme relating these systems. The results have myriad applications for finding explicit solutions for both quantum and classical systems.