Cosmic Ray Background Rejection with Wire-Cell LArTPC Event Reconstruction in the MicroBooNE Detector


Abstract in English

For a large liquid argon time projection chamber (LArTPC) operating on or near the Earths surface to detect neutrino interactions, the rejection of cosmogenic background is a critical and challenging task because of the large cosmic ray flux and the long drift time of the TPC. We introduce a superior cosmic background rejection procedure based on the Wire-Cell three-dimensional (3D) event reconstruction for LArTPCs. From an initial 1:20,000 neutrino to cosmic-ray background ratio, we demonstrate these tools on data from the MicroBooNE experiment and create a high performance generic neutrino event selection with a cosmic contamination of 14.9% (9.7%) for a visible energy region greater than O(200)~MeV. The neutrino interaction selection efficiency is 80.4% and 87.6% for inclusive $ u_mu$ charged-current and $ u_e$ charged-current interactions, respectively. This significantly improved performance compared to existing reconstruction algorithms, marks a major milestone toward reaching the scientific goals of LArTPC neutrino oscillation experiments operating near the Earths surface.

Download