No Arabic abstract
Purpose: Radiation therapy treatment planning is a trial-and-error, often time-consuming process. An optimal dose distribution based on a specific anatomy can be predicted by pre-trained deep learning (DL) models. However, dose distributions are often optimized based on not only patient-specific anatomy but also physician preferred trade-offs between planning target volume (PTV) coverage and organ at risk (OAR) sparing. Therefore, it is desirable to allow physicians to fine-tune the dose distribution predicted based on patient anatomy. In this work, we developed a DL model to predict the individualized 3D dose distributions by using not only the anatomy but also the desired PTV/OAR trade-offs, as represented by a dose volume histogram (DVH), as inputs. Methods: The desired DVH, fine-tuned by physicians from the initially predicted DVH, is first projected onto the Pareto surface, then converted into a vector, and then concatenated with mask feature maps. The network output for training is the dose distribution corresponding to the Pareto optimal DVH. The training/validation datasets contain 77 prostate cancer patients, and the testing dataset has 20 patients. Results: The trained model can predict a 3D dose distribution that is approximately Pareto optimal. We calculated the difference between the predicted and the optimized dose distribution for the PTV and all OARs as a quantitative evaluation. The largest average error in mean dose was about 1.6% of the prescription dose, and the largest average error in the maximum dose was about 1.8%. Conclusions: In this feasibility study, we have developed a 3D U-Net model with the anatomy and desired DVH as inputs to predict an individualized 3D dose distribution. The predicted dose distributions can be used as references for dosimetrists and physicians to rapidly develop a clinically acceptable treatment plan.
This paper develops a method of biologically guided deep learning for post-radiation FDG-PET image outcome prediction based on pre-radiation images and radiotherapy dose information. Based on the classic reaction-diffusion mechanism, a novel biological model was proposed using a partial differential equation that incorporates spatial radiation dose distribution as a patient-specific treatment information variable. A 7-layer encoder-decoder-based convolutional neural network (CNN) was designed and trained to learn the proposed biological model. As such, the model could generate post-radiation FDG-PET image outcome predictions with possible time-series transition from pre-radiotherapy image states to post-radiotherapy states. The proposed method was developed using 64 oropharyngeal patients with paired FDG-PET studies before and after 20Gy delivery (2Gy/daily fraction) by IMRT. In a two-branch deep learning execution, the proposed CNN learns specific terms in the biological model from paired FDG-PET images and spatial dose distribution as in one branch, and the biological model generates post-20Gy FDG-PET image prediction in the other branch. The proposed method successfully generated post-20Gy FDG-PET image outcome prediction with breakdown illustrations of biological model components. Time-series FDG-PET image predictions were generated to demonstrate the feasibility of disease response rendering. The developed biologically guided deep learning method achieved post-20Gy FDG-PET image outcome predictions in good agreement with ground-truth results. With break-down biological modeling components, the outcome image predictions could be used in adaptive radiotherapy decision-making to optimize personalized plans for the best outcome in the future.
Purpose: To develop a knowledge-based voxel-wise dose prediction system using a convolution neural network for high-dose-rate brachytherapy cervical cancer treatments with a tandem-and-ovoid (T&O) applicator. Methods: A 3D U-NET was utilized to output dose predictions using organ-at-risk (OAR), high-risk clinical target volume (HRCTV), and possible source locations. A sample of previous T&O treatments comprising 397 cases (273 training:62 validation:62 test), HRCTV and OARs (bladder/rectum/sigmoid) was used. Structures and dose were interpolated to 1x1x2.5mm3 dose planes with two input channels (source positions, voxel identification) and one output channel for dose. We evaluated dose difference (Delta D)(xyz)=D_(actual)(x,y,z)-D_(predicted)(x,y,z) and dice similarity coefficients in all cohorts across the clinically-relevant dose range (20-130% of prescription), mean and standard deviation. We also examined discrete DVH metrics used for T&O plan quality assessment: HRCTV D_90%(dose to hottest 90% volume) and OAR D_2cc, with Delta D_x=D_(x,actual)-D_(x,predicted). Pearson correlation coefficient, standard deviation, and mean quantified model performance on the clinical metrics. Results: Voxel-wise dose difference accuracy for 20-130% dose range for training(test) ranges for mean (Delta D) and standard deviation for all voxels was [-0.3%+/-2.0% to +1.0%+/-12.0%] ([-0.1%+/-4% to +4.0%+/-26%]). Voxel-wise dice similarity coefficients for 20-130% dose ranged from [0.96, 0.91]([0.94, 0.87]). DVH metric prediction in the training (test) set were HRCTV(Delta D_90)=-0.19+/-0.55 Gy (-0.09+/-0.67 Gy), bladder(Delta D_2cc)=-0.06+/-0.54 Gy (-0.17+/-0.67 Gy), rectum(Delta D)_2cc=-0.03+/-0.36 Gy (-0.04+/-0.46 Gy), and sigmoid(Delta D_2cc)=-0.01+/-0.34 Gy (0.00+/-0.44 Gy). Conclusion: 3D knowledge-based dose predictions for T&O brachytherapy provide accurate voxel-level and DVH metric estimates.
Musculoskeletal models have the potential to improve diagnosis and optimize clinical treatment by predicting accurate outcomes on an individual basis. However, the subject-specific modeling of spinal alignment is often strongly simplified or is based on radiographic assessments, exposing subjects to unnecessary radiation. We therefore developed a novel skin marker-based approach for modeling subject-specific spinal alignment and evaluated its feasibility by comparing the predicted with the actual intervertebral joint (IVJ) locations/orientations (ground truth) using lateral-view radiographic images. Moreover, the predictive performance of the subject-specific models was evaluated by comparing the predicted L1/L2 spinal loads during various functional activities with in vivo measured data obtained from the OrthoLoad database. IVJ locations/orientations were predicted closer to ground truth as opposed to standard model scaling, with average location prediction errors of 0.99+/-0.68 cm on the frontal and 1.21+/-0.97 cm on the transverse axis as well as an average orientation prediction error of 4.74{deg}+/-2.80{deg}. Simulated spinal loads showed similar curve patterns but considerably larger values as compared to in vivo measured data. Differences in spinal loads between generic and subject-specific models become only apparent on an individual subject level. These results underline the feasibility of the proposed method and associated workflow for inter- and intra-subject investigations using musculoskeletal simulations. When implemented into standard model scaling workflows, it is expected to improve the accuracy of muscle activity and joint loading simulations, which is crucial for investigations of treatment effects or pathology-dependent deviations.
Purpose: This paper describes a new method to apply deep-learning algorithms for automatic segmentation of radiosensitive organs from 3D tomographic CT images before computing organ doses using a GPU-based Monte Carlo code. Methods: A deep convolutional neural network (CNN) for organ segmentation is trained to automatically delineate radiosensitive organs from CT. With a GPU-based Monte Carlo dose engine (ARCHER) to derive CT dose of a phantom made from a subjects CT scan, we are then able to compute the patient-specific CT dose for each of the segmented organs. The developed tool is validated by using Relative Dose Error (RDE) against the organ doses calculated by ARCHER with manual segmentation performed by radiologists. The dose computation results are also compared against organ doses from population-average phantoms to demonstrate the improvement achieved by using the developed tool. In this study, two datasets were used: The Lung CT Segmentation Challenge 2017 (LCTSC) dataset, which contains 60 thoracic CT scan patients each with 5 segmented organs, and the Pancreas-CT (PCT) dataset, which contains 43 abdominal CT scan patients each with 8 segmented organs. Five-fold cross-validation of the new method is performed on both datasets. Results: Comparing with the traditional organ dose evaluation method that based on population-average phantom, our proposed method achieved the smaller RDE range on all organs with -4.3%~1.5% vs -31.5%~33.9% (lung), -7.0%~2.3% vs -15.2%~125.1% (heart), -18.8%~40.2% vs -10.3%~124.1% (esophagus) in the LCTSC dataset and -5.6%~1.6% vs -20.3%~57.4% (spleen), -4.5%~4.6% vs -19.5%~61.0% (pancreas), -2.3%~4.4% vs -37.8%~75.8% (left kidney), -14.9%~5.4% vs -39.9% ~14.6% (gall bladder), -0.9%~1.6% vs -30.1%~72.5% (liver), and -23.0%~11.1% vs -52.5%~-1.3% (stomach) in the PCT dataset.
While compressed sensing (CS) based reconstructions have been developed for low-dose CBCT, a clear understanding on the relationship between the image quality and imaging dose at low dose levels is needed. In this paper, we qualitatively investigate this subject in a comprehensive manner with extensive experimental and simulation studies. The basic idea is to plot image quality and imaging dose together as functions of number of projections and mAs per projection over the whole clinically relevant range. A clear understanding on the tradeoff between image quality and dose can be achieved and optimal low-dose CBCT scan protocols can be developed for various imaging tasks in IGRT. Main findings of this work include: 1) Under the CS framework, image quality has little degradation over a large dose range, and the degradation becomes evident when the dose < 100 total mAs. A dose < 40 total mAs leads to a dramatic image degradation. Optimal low-dose CBCT scan protocols likely fall in the dose range of 40-100 total mAs, depending on the specific IGRT applications. 2) Among different scan protocols at a constant low-dose level, the super sparse-view reconstruction with projection number less than 50 is the most challenging case, even with strong regularization. Better image quality can be acquired with other low mAs protocols. 3) The optimal scan protocol is the combination of a medium number of projections and a medium level of mAs/view. This is more evident when the dose is around 72.8 total mAs or below and when the ROI is a low-contrast or high-resolution object. Based on our results, the optimal number of projections is around 90 to 120. 4) The clinically acceptable lowest dose level is task dependent. In our study, 72.8mAs is a safe dose level for visualizing low-contrast objects, while 12.2 total mAs is sufficient for detecting high-contrast objects of diameter greater than 3 mm.