Do you want to publish a course? Click here

Analysis and Design of a PMUT-based transducer for Powering Brain Implants

71   0   0.0 ( 0 )
 Added by Farshad Moradi
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper presents an analytical design of an ultrasonic power transfer system based on piezoelectric micro-machined ultrasonic transducer (PMUT) for fully wireless brain implants in mice. The key steps like the material selection of each layer and the top electrode radius to maximize the coupling factor are well-detailed. This approach results in the design of a single cell with a high effective coupling coefficient. Furthermore, compact models are used to make the design process less time-consuming for designers. These models are based on the equivalent circuit theory for the PMUT. A cell of 107 um in radius, 5 um in thickness of Lead Zirconate Titanium (PZT), and 10 um in thickness of silicon (Si) is found to have a 4% of effective coupling coefficient among the highest values for a clamped edge boundary conditions. Simulation results show a frequency of 2.84 MHz as resonance. In case of an array, mutual impedance and numerical modeling are used to estimate the distance between the adjacent cells. In addition, the area of the proposed transducer and the number of cells are computed with the Rayleigh distance and neglecting the cross-talk among cells, respectively. The designed transducer consists of 7x7 cells in an area of 3.24 mm2. The transducer is able to deliver an acoustic intensity of 7.185 mW/mm2 for a voltage of 19.5 V for powering brain implants seated in the motor cortex and striatum of the mices brain. The maximum acoustic intensity occurs at a distance of 2.5 mm in the near field which was estimated with the Rayleigh length equation.

rate research

Read More

Traumatic brain injury [TBI] has become a signature injury of current military conflicts, with debilitating, costly, and long-lasting effects. Although mechanisms by which head impacts cause TBI have been well-researched, the mechanisms by which blasts cause TBI are not understood. From numerical hydrodynamic simulations, we have discovered that non-lethal blasts can induce sufficient skull flexure to generate potentially damaging loads in the brain, even without a head impact. The possibility that this mechanism may contribute to TBI has implications for injury diagnosis and armor design.
62 - Yi Guo , Li Mao , Gongsen Zhang 2020
Recent studies have reported an increased risk of developing brain and neck tumors, as well as cataracts, in practitioners in interventional radiology (IR). Occupational radiation protection in IR has been a top concern for regulatory agencies and professional societies. To help minimize occupational radiation exposure in IR, we conceptualized a virtual reality (VR) based radiation safety training system to help operators understand complex radiation fields and to avoid high radiation areas through game-like interactive simulations. The preliminary development of the system has yielded results suggesting that the training system can calculate and report the radiation exposure after each training session based on a database precalculated from computational phantoms and Monte Carlo simulations and the position information provided in real-time by the MS Hololens headset worn by trainee. In addition, real-time dose rate and cumulative dose will be displayed to the trainee by MS Hololens to help them adjust their practice. This paper presents the conceptual design of the overall hardware and software design, as well as preliminary results to combine MS HoloLens headset and complex 3D X-ray field spatial distribution data to create a mixed reality environment for safety training purpose in IR.
Dementia disorders are increasingly becoming sources of a broad range of problems, strongly interfering with normal daily tasks of a growing number of individuals. Such neurodegenerative diseases are often accompanied with progressive brain atrophy that, at late stages, leads to drastically reduced brain dimensions. At the moment, this structural involution can be followed with XCT or MRI measurements that share numerous disadvantages in terms of usability, invasiveness and costs. In this work, we aim to retrieve information concerning the brain atrophy stage and its evolution, proposing a novel approach based on non-invasive time-resolved Near Infra-Red (tr-NIR) measurements. For this purpose, we created a set of human-head atlases, in which we eroded the brain as it would happen in a clinical brain-atrophy progression. With these realistic meshes, we reproduced a longitudinal tr-NIR study exploiting a Monte-Carlo photon propagation algorithm to model the varying cerebral spinal fluid (CSF). The study of the time-resolved reflectance curve at late photon arrival times exhibited peculiar slope-changes upon CSF layer increase that were confirmed under several measurement conditions. The performance of the technique suggests good sensitivity to CSF variation, useful for a fast and non-invasive observation of the dementia progression.
Background: Magnetization transfer (MT) saturation reflects the additional saturation of the MRI signal imposed by an MT pulse and is largely driven by the saturation of the bound pool. This reduction of the bound polarization by the MT pulse is less efficient than predicted by the differential B1-square law of absorption. Thus, B1 inhomogeneities lead to a residual bias in the MT saturation maps. We derive a heuristic correction to reduce this bias for a widely used multi-parameter mapping protocol at 3T. Methods: The amplitude of the MT pulse was varied via the nominal flip angle to mimic variations in B1. The MT saturations dependence on the actual flip angle features a linear correction term, which was determined separately for gray and white matter. Results: The deviation of MT saturation from differential B1-square law is well described by a linear decrease with the actual flip angle of the MT pulse. This decrease showed no significant differences between gray and white matter. Thus, the post hoc correction does not need to take different tissue types into account. Bias-corrected MT saturation maps appeared more symmetric and highlighted highly myelinated tracts. Discussion: Our correction involves a calibration that is specific for the MT pulse. While it can also be used to rescale nominal flip angles, different MT pulses and/or protocols will require individual calibration. Conclusion: The suggested B1 correction of the MT maps can be applied post hoc using an independently acquired flip angle map.
Wearable devices have been shown to effectively measure the head movement during impacts in sports like American football. When a head impact occurs, the device is triggered to collect and save the kinematic measurements during a predefined time window. Then, based on the collected kinematics, finite element (FE) head models can calculate brain strain, which is used to evaluate the risk of mild traumatic brain injury. To find a time window that can provide a sufficient duration of kinematics for FE analysis, we investigated 118 on-field video-confirmed head impacts collected by the Stanford Instrumented Mouthguard. Because the individual differences in brain geometry influence these calculations, we included six representative brain geometries and found that larger brains need a longer time window of kinematics for accurate calculation. Among the different sizes of brains, a pre-trigger time of 20 ms and a post-trigger time of 70 ms were found to yield calculations of brain strain and strain rate that were not significantly different from calculations using the original 200 ms time window recorded by the mouthguard.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا