Do you want to publish a course? Click here

Maximizing Post-selected Quantum Correlations from Classical Interference in a Multi-core Fiber Beamsplitter

104   0   0.0 ( 0 )
 Added by Stephen Walborn
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Fourth-order interference is an information processing primitive for photonic quantum technologies. When used in conjunction with post-selection, it forms the basis of photonic controlled logic gates, entangling measurements, and can be used to produce quantum correlations. Here, using classical weak coherent states as inputs, we study fourth-order interference in novel $4 times 4$ multi-port beam splitters built within multi-core optical fibers. Using two mutually incoherent weak laser pulses as inputs, we observe high-quality fourth order interference between photons from different cores, as well as self-interference of a two-photon wavepacket. In addition, we show that quantum correlations, in the form of quantum discord, can be maximized by controlling the intensity ratio between the two input weak coherent states. This should allow for the exploitation of quantum correlations in future telecommunication networks.



rate research

Read More

Multi-port beamsplitters are cornerstone devices for high-dimensional quantum information tasks, which can outperform the two-dimensional ones. Nonetheless, the fabrication of such devices has been proven to be challenging with progress only recently achieved with the advent of integrated photonics. Here, we report on the production of high-quality $N times N$ (with $N=4,7$) multi-port beamsplitters based on a new scheme for manipulating multi-core optical fibers. By exploring their compatibility with optical fiber components, we create 4-dimensional quantum systems and implement the measurement-device-independent random number generation task with a programmable 4-arm interferometer operating at a 2 MHz repetition rate. Thanks to the high visibilities observed, we surpass the 1-bit limit of binary protocols and attain 1.23 bits of certified private randomness per experimental round. Our result demonstrates that fast switching, low-loss and high optical quality for high-dimensional quantum information can be simultaneously achieved with multi-core fiber technology.
We report an electrically driven semiconductor single photon source capable of emitting photons with a coherence time of up to 400 ps under fixed bias. It is shown that increasing the injection current causes the coherence time to reduce and this effect is well explained by the fast modulation of a fluctuating environment. Hong-Ou-Mandel type two-photon interference using a Mach-Zehnder interferometer is demonstrated using this source to test the indistinguishability of individual photons by post-selecting events where two photons collide at a beamsplitter. Finally, we consider how improvements in our detection system can be used to achieve a higher interference visibility.
We demonstrate three and four input multiports in a three dimensional glass platform, fabricated using the femtosecond laser direct-write technique. Hong-Ou-Mandel (HOM) interference is observed and a full quantum characterisation is performed, obtaining two photon correlation matrices for all combinations of input and output ports. For the three-port case, the quantum visibilities are accurately predicted solely from measurement of the classical coupling ratios.
Quantum optics plays a central role in the study of fundamental concepts in quantum mechanics, and in the development of new technological applications. Typical experiments employ non-classical light, such as entangled photons, generated by parametric processes. The standard characterization of the sources by quantum tomography, which relies on detecting the pairs themselves and thus requires single photon detectors, limits both measurement speed and accuracy. Here we show that the spectral characterization of the quantum correlations generated by two-photon sources can be directly performed classically with an unprecedented spectral resolution. This streamlined technique has the potential to speed up design and testing of massively parallel integrated sources by providing a fast and reliable quality control procedure. Adapting our method to explore other degrees of freedom would allow the complete characterization of biphoton states generated by parametric processes.
Optical fibers have altered astronomical instrument design by allowing for a complex, often large instrument to be mounted in a remote and stable location with respect to the telescope. The fibers also enable the possibility to rearrange the signal from a focal plane to form a psuedo-slit at the entrance to a spectrograph, optimizing the detector usage and enabling the study of hundreds of thousands of stars or galaxies simultaneously. Multi-core fibers in particular offer several favorable properties with respect to traditional fibers: 1) the separation between single-mode cores is greatly reduced and highly regular with respect to free standing fibers, 2) they offer a monolithic package with multi-fiber capabilities and 3) they operate at the diffraction limit. These properties have enabled the realization of single component photonic lanterns, highly simplified fiber Bragg gratings, and advanced fiber mode scramblers. In addition, the precise grid of cores has enabled the design of efficient single-mode fiber integral field units for spectroscopy. In this paper, we provide an overview of the broad range of applications enabled by multi-core fiber technology in astronomy and outline future areas of development.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا