No Arabic abstract
A desirable property of learning systems is to be both effective and interpretable. Towards this goal, recent models have been proposed that first generate an extractive explanation from the input text and then generate a prediction on just the explanation called explain-then-predict models. These models primarily consider the task input as a supervision signal in learning an extractive explanation and do not effectively integrate rationales data as an additional inductive bias to improve task performance. We propose a novel yet simple approach ExPred, that uses multi-task learning in the explanation generation phase effectively trading-off explanation and prediction losses. And then we use another prediction network on just the extracted explanations for optimizing the task performance. We conduct an extensive evaluation of our approach on three diverse language datasets -- fact verification, sentiment classification, and QA -- and find that we substantially outperform existing approaches.
Many real-world analytics problems involve two significant challenges: prediction and optimization. Due to the typically complex nature of each challenge, the standard paradigm is predict-then-optimize. By and large, machine learning tools are intended to minimize prediction error and do not account for how the predictions will be used in the downstream optimization problem. In contrast, we propose a new and very general framework, called Smart Predict, then Optimize (SPO), which directly leverages the optimization problem structure, i.e., its objective and constraints, for designing better prediction models. A key component of our framework is the SPO loss function which measures the decision error induced by a prediction. Training a prediction model with respect to the SPO loss is computationally challenging, and thus we derive, using duality theory, a convex surrogate loss function which we call the SPO+ loss. Most importantly, we prove that the SPO+ loss is statistically consistent with respect to the SPO loss under mild conditions. Our SPO+ loss function can tractably handle any polyhedral, convex, or even mixed-integer optimization problem with a linear objective. Numerical experiments on shortest path and portfolio optimization problems show that the SPO framework can lead to significant improvement under the predict-then-optimize paradigm, in particular when the prediction model being trained is misspecified. We find that linear models trained using SPO+ loss tend to dominate random forest algorithms, even when the ground truth is highly nonlinear.
Multilingual pretrained language models have demonstrated remarkable zero-shot cross-lingual transfer capabilities. Such transfer emerges by fine-tuning on a task of interest in one language and evaluating on a distinct language, not seen during the fine-tuning. Despite promising results, we still lack a proper understanding of the source of this transfer. Using a novel layer ablation technique and analyses of the models internal representations, we show that multilingual BERT, a popular multilingual language model, can be viewed as the stacking of two sub-networks: a multilingual encoder followed by a task-specific language-agnostic predictor. While the encoder is crucial for cross-lingual transfer and remains mostly unchanged during fine-tuning, the task predictor has little importance on the transfer and can be reinitialized during fine-tuning. We present extensive experiments with three distinct tasks, seventeen typologically diverse languages and multiple domains to support our hypothesis.
This paper surveys and organizes research works in a new paradigm in natural language processing, which we dub prompt-based learning. Unlike traditional supervised learning, which trains a model to take in an input x and predict an output y as P(y|x), prompt-based learning is based on language models that model the probability of text directly. To use these models to perform prediction tasks, the original input x is modified using a template into a textual string prompt x that has some unfilled slots, and then the language model is used to probabilistically fill the unfilled information to obtain a final string x, from which the final output y can be derived. This framework is powerful and attractive for a number of reasons: it allows the language model to be pre-trained on massive amounts of raw text, and by defining a new prompting function the model is able to perform few-shot or even zero-shot learning, adapting to new scenarios with few or no labeled data. In this paper we introduce the basics of this promising paradigm, describe a unified set of mathematical notations that can cover a wide variety of existing work, and organize existing work along several dimensions, e.g.the choice of pre-trained models, prompts, and tuning strategies. To make the field more accessible to interested beginners, we not only make a systematic review of existing works and a highly structured typology of prompt-based concepts, but also release other resources, e.g., a website http://pretrain.nlpedia.ai/ including constantly-updated survey, and paperlist.
The predict-then-optimize framework is fundamental in many practical settings: predict the unknown parameters of an optimization problem, and then solve the problem using the predicted values of the parameters. A natural loss function in this environment is to consider the cost of the decisions induced by the predicted parameters, in contrast to the prediction error of the parameters. This loss function was recently introduced in Elmachtoub and Grigas (2017) and referred to as the Smart Predict-then-Optimize (SPO) loss. In this work, we seek to provide bounds on how well the performance of a prediction model fit on training data generalizes out-of-sample, in the context of the SPO loss. Since the SPO loss is non-convex and non-Lipschitz, standard results for deriving generalization bounds do not apply. We first derive bounds based on the Natarajan dimension that, in the case of a polyhedral feasible region, scale at most logarithmically in the number of extreme points, but, in the case of a general convex feasible region, have linear dependence on the decision dimension. By exploiting the structure of the SPO loss function and a key property of the feasible region, which we denote as the strength property, we can dramatically improve the dependence on the decision and feature dimensions. Our approach and analysis rely on placing a margin around problematic predictions that do not yield unique optimal solutions, and then providing generalization bounds in the context of a modified margin SPO loss function that is Lipschitz continuous. Finally, we characterize the strength property and show that the modified SPO loss can be computed efficiently for both strongly convex bodies and polytopes with an explicit extreme point representation.
The predict-then-optimize framework is fundamental in practical stochastic decision-making problems: first predict unknown parameters of an optimization model, then solve the problem using the predicted values. A natural loss function in this setting is defined by measuring the decision error induced by the predicted parameters, which was named the Smart Predict-then-Optimize (SPO) loss by Elmachtoub and Grigas [arXiv:1710.08005]. Since the SPO loss is typically nonconvex and possibly discontinuous, Elmachtoub and Grigas [arXiv:1710.08005] introduced a convex surrogate, called the SPO+ loss, that importantly accounts for the underlying structure of the optimization model. In this paper, we greatly expand upon the consistency results for the SPO+ loss provided by Elmachtoub and Grigas [arXiv:1710.08005]. We develop risk bounds and uniform calibration results for the SPO+ loss relative to the SPO loss, which provide a quantitative way to transfer the excess surrogate risk to excess true risk. By combining our risk bounds with generalization bounds, we show that the empirical minimizer of the SPO+ loss achieves low excess true risk with high probability. We first demonstrate these results in the case when the feasible region of the underlying optimization problem is a polyhedron, and then we show that the results can be strengthened substantially when the feasible region is a level set of a strongly convex function. We perform experiments to empirically demonstrate the strength of the SPO+ surrogate, as compared to standard $ell_1$ and squared $ell_2$ prediction error losses, on portfolio allocation and cost-sensitive multi-class classification problems.