Do you want to publish a course? Click here

A Comprehensive Survey of 6G Wireless Communications

96   0   0.0 ( 0 )
 Added by Yang Zhao
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

While fifth-generation (5G) communications are being rolled out worldwide, sixth-generation (6G) communications have attracted much attention from both the industry and the academia. Compared with 5G, 6G will have a wider frequency band, higher transmission rate, spectrum efficiency, greater connection capacity, shorter delay, broader coverage, and more robust anti-interference capability to satisfy various network requirements. This survey presents an insightful understanding of 6G wireless communications by introducing requirements, features, critical technologies, challenges, and applications. First, we give an overview of 6G from perspectives of technologies, security and privacy, and applications. Subsequently, we introduce various 6G technologies and their existing challenges in detail, e.g., artificial intelligence (AI), intelligent surfaces, THz, space-air-ground-sea integrated network, cell-free massive MIMO, etc. Because of these technologies, 6G is expected to outperform existing wireless communication systems regarding the transmission rate, latency, global coverage, etc. Next, we discuss security and privacy techniques that can be applied to protect data in 6G. Since edge devices are expected to gain popularity soon, the vast amount of generated data and frequent data exchange make the leakage of data easily. Finally, we predict real-world applications built on the technologies and features of 6G; for example, smart healthcare, smart city, and smart manufacturing will be implemented by taking advantage of AI.



rate research

Read More

The sixth generation (6G) wireless communication networks are envisioned to revolutionize customer services and applications via the Internet of Things (IoT) towards a future of fully intelligent and autonomous systems. In this article, we explore the emerging opportunities brought by 6G technologies in IoT networks and applications, by conducting a holistic survey on the convergence of 6G and IoT. We first shed light on some of the most fundamental 6G technologies that are expected to empower future IoT networks, including edge intelligence, reconfigurable intelligent surfaces, space-air-ground-underwater communications, Terahertz communications, massive ultra-reliable and low-latency communications, and blockchain. Particularly, compared to the other related survey papers, we provide an in-depth discussion of the roles of 6G in a wide range of prospective IoT applications via five key domains, namely Healthcare Internet of Things, Vehicular Internet of Things and Autonomous Driving, Unmanned Aerial Vehicles, Satellite Internet of Things, and Industrial Internet of Things. Finally, we highlight interesting research challenges and point out potential directions to spur further research in this promising area.
5G wireless communications technology is being launched, with many smart applications being integrated. However, 5G specifications merge the requirements of new emerging technologies forcefully. These include data rate, capacity, latency, reliability, resources sharing, and energy/bit. To meet these challenging demands, research is focusing on 6G wireless communications enabling different technologies and emerging new applications. In this report, the latest research work on 6G technologies and applications is summarized, and the associated research challenges are discussed.
As the standardization of 5G is being solidified, researchers are speculating what 6G will be. Integrating sensing functionality is emerging as a key feature of the 6G Radio Access Network (RAN), allowing to exploit the dense cell infrastructure of 5G for constructing a perceptive network. In this paper, we provide a comprehensive overview on the background, range of key applications and state-of-the-art approaches of Integrated Sensing and Communications (ISAC). We commence by discussing the interplay between sensing and communications (S&C) from a historical point of view, and then consider multiple facets of ISAC and its performance gains. By introducing both ongoing and potential use cases, we shed light on industrial progress and standardization activities related to ISAC. We analyze a number of performance tradeoffs between S&C, spanning from information theoretical limits, tradeoffs in physical layer performance, to the tradeoff in cross-layer designs. Next, we discuss signal processing aspects of ISAC, namely ISAC waveform design and receive signal processing. As a step further, we provide our vision on the deeper integration between S&C within the framework of perceptive networks, where the two functionalities are expected to mutually assist each other, i.e., communication-assisted sensing and sensing-assisted communications. Finally, we summarize the paper by identifying the potential integration between ISAC and other emerging communication technologies, and their positive impact on the future of wireless networks.
The future 6G of wireless communication networks will have to meet multiple requirements in increasingly demanding levels, either individually or in combinations in small groups. This trend has spurred recent research activities on transceiver hardware architectures and novel wireless connectivity concepts. Among the emerging wireless hardware architectures belong the Reconfigurable Intelligent Surfaces (RISs), which are artificial planar structures with integrated electronic circuits that can be programmed to manipulate an incoming ElectroMagnetic (EM) field in a wide variety of functionalities. Incorporating RISs in wireless networks has been recently advocated as a revolutionary means to transform any naturally passive wireless communication environment to an active one. This can be accomplished by deploying cost-effective and easy to coat RISs to the environments objects (e.g., building facades and indoor walls/ceilings), thus, offering increased environmental intelligence for the scope of diverse wireless networking objectives. In this paper, we first provide a brief history on wave propagation control for optics and acoustics, and overview two representative indoor wireless trials at 2.47GHz for spatial EM modulation with a passive discrete RIS. The first trial dating back to 2014 showcases the feasibility of highly accurate spatiotemporal focusing and nulling, while the second very recent one demonstrates that passive RISs can enrich multipath scattering, thus, enabling throughput boosted communication links. Motivated by the late research excitement on the RIS potential for intelligent EM wave propagation modulation, we describe the status on RIS hardware architectures and present key open challenges and future research directions for RIS design and RIS-empowered 6G wireless communications.
The sixth-generation (6G) wireless communication network is expected to integrate the terrestrial, aerial, and maritime communications into a robust network which would be more reliable, fast, and can support a massive number of devices with ultra-low latency requirements. The researchers around the globe are proposing cutting edge technologies such as artificial intelligence (AI)/machine learning (ML), quantum communication/quantum machine learning (QML), blockchain, tera-Hertz and millimeter waves communication, tactile Internet, non-orthogonal multiple access (NOMA), small cells communication, fog/edge computing, etc., as the key technologies in the realization of beyond 5G (B5G) and 6G communications. In this article, we provide a detailed overview of the 6G network dimensions with air interface and associated potential technologies. More specifically, we highlight the use cases and applications of the proposed 6G networks in various dimensions. Furthermore, we also discuss the key performance indicators (KPI) for the B5G/6G network, challenges, and future research opportunities in this domain.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا