Transformative Applications of Machine Learning for Chemical Reactions


Abstract in English

Machine learning techniques applied to chemical reactions has a long history. The present contribution discusses applications ranging from small molecule reaction dynamics to platforms for reaction planning. ML-based techniques can be of particular interest for problems which involve both, computation and experiments. For one, Bayesian inference is a powerful approach to include knowledge from experiment in improving computational models. ML-based methods can also be used to handle problems that are formally intractable using conventional approaches, such as exhaustive characterization of state-to-state information in reactive collisions. Finally, the explicit simulation of reactive networks as they occur in combustion has become possible using machine-learned neural network potentials. This review provides an overview of the questions that can and have been addressed using machine learning techniques and an outlook discusses challenges in this diverse and stimulating field. It is concluded that ML applied to chemistry problems as practiced and conceived today has the potential to transform the way with which the field approaches problems involving chemical reactions, both, in research and academic teaching.

Download