Do you want to publish a course? Click here

Wolf-Rayet galaxies in SDSS-IV MaNGA. II. Metallicity dependence of the high-mass slope of the stellar initial mass function

114   0   0.0 ( 0 )
 Added by Fu-Heng Liang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

As hosts of living high-mass stars, Wolf-Rayet (WR) regions or WR galaxies are ideal objects for constraining the high-mass end of the stellar initial mass function (IMF). We construct a large sample of 910 WR galaxies/regions that cover a wide range of stellar metallicity, by combining three catalogs of WR galaxies/regions as previously selected from the SDSS and SDSS-IV/MaNGA surveys. We measure the equivalent width of the WR blue bump at ~4650 r{A} from each spectrum, and make comparisons with predictions of both singular population models in Starburst99 and binary population models in BPASS. We have also applied a Bayesian inference code to perform full spectral fitting to the WR spectra using the singular and binary stellar population models from BPASS as spectral templates, and we make model selection for models of different IMF slopes based on the Bayesian evidence ratios. These analyses have consistently led to a positive correlation of IMF high-mass slope $alpha$ with stellar metallicity $Z$, i.e. with steeper IMF (more bottom-heavy) at higher metallicities, and the conclusion holds even when binary population models are adopted.

rate research

Read More

MaNGA provides the opportunity to make precise spatially resolved measurements of the IMF slope in galaxies owing to its unique combination of spatial resolution, wavelength coverage and sample size. We derive radial gradients in age, element abundances and IMF slope analysing optical and near-infrared absorption features from stacked spectra out to the half-light radius of 366 early-type galaxies with masses $9.9 - 10.8;log M/M_{odot}$. We find flat gradients in age and [$alpha$/Fe] ratio, as well as negative gradients in metallicity, consistent with the literature. We further derive significant negative gradients in the [Na/Fe] ratio with galaxy centres being well enhanced in Na abundance by up to 0.5 dex. Finally, we find a gradient in IMF slope with a bottom-heavy IMF in the centre (typical mass excess factor of 1.5) and a Milky Way-type IMF at the half-light radius. This pattern is mass-dependent with the lowest mass galaxies in our sample featuring only a shallow gradient around a Milky Way IMF. Our results imply the local IMF-$sigma$ relation within galaxies to be even steeper than the global relation and hint towards the local metallicity being the dominating factor behind the IMF variations. We also employ different stellar population models in our analysis and show that a radial IMF gradient is found independently of the stellar population model used. A similar analysis of the Wing-Ford band provides inconsistent results and further evidence of the difficulty in measuring and modelling this particular feature.
89 - Wei Zhang , Xu Kong , Cheng Li 2006
We use a large sample of 174 Wolf-Rayet (WR) galaxies drawn from the Sloan Digital Sky Survey to study whether and how the slope of the stellar initial mass function depends on metallicity. We calculate for each object its oxygen abundance according to which we divide our sample into four metallicity subsamples. For each subsample, we then measure three quantities: the equivalent width of hb emission line, the equivalent width of WR bump around 4650AA, and the WR bump-to-hb intensity ratio, and compare to the predictions of the same quantities by evolutionary synthesis models of Schaerer & Vacca. Such comparisons lead to a clear dependence of the slope of initial mass function ($alpha$) on metallicity in that galaxies at higher metallicities tend to have steeper initial mass functions, with the slope index ranging from $alphasim$1.00 for the lowest metallicity of $Z=0.001$ to $alphasim$3.30 for the highest metallicity $Z=0.02$. We have carefully examined the possible sources of systematic error either in models or in our observational measurements and shown that these sources do not change this result.
We present a study on the stellar age and metallicity distributions for 1105 galaxies using the STARLIGHT software on MaNGA integral field spectra. We derive age and metallicity gradients by fitting straight lines to the radial profiles, and explore their correlations with total stellar mass M*, NUV-r colour and environments, as identified by both the large scale structure (LSS) type and the local density. We find that the mean age and metallicity gradients are close to zero but slightly negative, which is consistent with the inside-out formation scenario. Within our sample, we find that both the age and metallicity gradients show weak or no correlation with either the LSS type or local density environment. In addition, we also study the environmental dependence of age and metallicity values at the effective radii. The age and metallicity values are highly correlated with M* and NUV-r and are also dependent on LSS type as well as local density. Low-mass galaxies tend to be younger and have lower metallicity in low-density environments while high-mass galaxies are less affected by environment.
249 - Fu-Heng Liang 2020
Wolf-Rayet (WR) galaxies are a rare population of galaxies that host living high-mass stars during their WR phase (i.e. WR stars) and are thus expected to provide interesting constraints on the stellar Initial Mass Function, massive star formation, stellar evolution models, etc. Spatially resolved spectroscopy should in principle provide a more efficient way of identifying WR galaxies than single-fiber surveys of galactic centers such as SDSS-I & II, as WR stars should be more preferentially found in discs. Using IFU data from the ongoing SDSS-IV MaNGA survey, we have performed a thorough search for WR galaxies. We first identify H II regions in each datacube and carry out full spectral fitting to the stacked spectra. We then visually inspect the residual spectrum of each H II region and identify WR regions that present a significant blue bump at 4600-4750 A. The resulting WR catalog includes 267 WR regions of ~500pc (radius) sizes, distributed in 90 galaxies from the current sample of MaNGA (MaNGA Product Launch 7). We find WR regions are exclusively found in galaxies that show bluest colors and highest star formation rates for their mass. Most WR galaxies have late-type morphologies and show relatively large asymmetry in their images, implying that WR regions are more preferentially found in interacting/merging galaxies. We estimate the stellar mass function of WR galaxies and the mass-dependent detection rate. The detection rate of WR galaxies is typically ~2%, with weak dependence on stellar mass. This detection rate is about 40 times higher than previous studies with SDSS single fiber data, and by a factor of 2 lower than the CALIFA-based WR catalog. We make comparisons with SDSS and CALIFA studies, and conclude that different detection rates can be explained mainly by three factors: spatial coverage, spectral signal-to-noise ratio, and redshift ranges of the parent sample.
By means of the fossil record method implemented through Pipe3D, we reconstruct the global and radial stellar mass growth histories (MGHs) of an unprecedentedly large sample of galaxies, ranging from dwarf to giant objects, from the Mapping Nearby Galaxies at the Apache Point Observatory survey. We confirm that the main driver of the global MGHs is mass, with more massive galaxies assembling their masses earlier (downsizing), though for a given mass, the global MGHs segregate by color, specific star formation rate (sSFR), and morphological type. From the inferred radial mean MGHs, we find that at the late evolutionary stages (or for fractions of assembled mass larger than ~ 80%), the innermost regions formed stars on average earlier than the outermost ones (inside-out). At earlier epochs, when the age resolution of the method becomes poor, the mass assembly seems to be spatially homogeneous or even in the outside-in mode, specially for the red/quiescent/early-type galaxies. The innermost MGHs are in general more regular (less scatter around the mean) than the outermost ones. For dwarf and low-mass galaxies, we do not find evidence of an outside-in formation mode; instead their radial MGHs are very diverse most of the time, with periods of outside- in and inside-out modes (or strong radial migration), suggesting this an episodic SF history. Blue/star-forming/late-type galaxies present on average a significantly more pronounced inside-out formation mode than red/quiescent/early-type galaxies, independently of mass. We discuss our results in the light of the processes of galaxy formation, quenching, and radial migration. We discuss also on the uncertainties and biases of the fossil record method and how they could affect our results.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا