Low-scale baryogenesis could be discovered at $B$-factories and the LHC. In the $B$-Mesogenesis paradigm [G. Elor, M. Escudero, and A. E. Nelson, PRD 99, 035031 (2019), arXiv:1810.00880], the CP violating oscillations and subsequent decays of $B$ mesons in the early Universe simultaneously explain the origin of the baryonic and the dark matter of the Universe. This mechanism for baryo- and dark matter genesis from $B$ mesons gives rise to distinctive signals at collider experiments, which we scrutinize in this paper. We study CP violating observables in the $B^0_q-bar{B}_q^0$ system, discuss current and expected sensitivities for the exotic decays of $B$ mesons into a visible baryon and missing energy, and explore the implications of direct searches for a TeV-scale colored scalar at the LHC and in meson-mixing observables. Remarkably, we conclude that a combination of measurements at BaBar, Belle, Belle II, LHCb, ATLAS and CMS can fully test $B$-Mesogenesis.