Pollux: A weak dynamo-driven dipolar magnetic field and implications for its probable planet


Abstract in English

Context: Pollux is considered as an archetype of a giant star hosting a planet. We then discovered a weak magnetic field at its surface using spectropolarimetry. Aims and Methods: We followed up our investigations on Pollux first using ESPaDOnS at CFHT and then Narval at TBL to obtain Stokes I and Stokes V spectra to study their variations for a duration of 4.25 years, that is, for more than two periods of about 590 d of the RV variations. We used the least-squares deconvolution (LSD) profiles to measure the longitudinal magnetic field and to perform a Zeeman Doppler imaging (ZDI) investigation. Results: The longitudinal magnetic field of Pollux is found to vary with a sinusoidal behavior and a period similar to that of the RV variations. From the ZDI investigation a rotation period of Pollux is determined to be equal to 660+/-15 days and possibly different than the period of variations of the RV. As to the magnetic topology, the poloidal component is dominant and almost purely dipolar with an inclination of 10.5{deg} of the dipole with respect to the rotation axis. The mean strength of the surface magnetic field is 0.44 G. Conclusions: As to the origin of the magnetic field of Pollux, we favor the hypothesis that it is maintained through contemporaneous dynamo action. Pollux appears as the representative of a class of slowly rotating and weakly magnetic G-K red giants. To explain the sinusoidal RV variations of Pollux, two scenarios are proposed. If the RV period is different from the rotation period, the observed periodic RV variations are due to the hosted planet and the contribution of Pollux magnetic activity is not significantly detected. In the peculiar case in which the two periods are equal, we cannot discard the possibility that the activity of Pollux could explain the total RV variations and that the planet hypothesis would appear unnecessary.

Download