Do you want to publish a course? Click here

Triply Charged Monopole and Magnetic Quarks

60   0   0.0 ( 0 )
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

We describe the internal composition of a topologically stable monopole carrying a magnetic charge of $6pi/e$ that arises from the spontaneous breaking of the trinification symmetry $SU(3)_ctimes SU(3)_Ltimes SU(3)_R$ ($G$). Since this monopole carries no color magnetic charge, a charge of $6pi/e$ is required by the Dirac quantization condition. The breaking of $G$ to the Standard Model occurs in a number of steps and yields the desired topologically stable monopole (magnetic baryon), consisting of three confined monopoles. The confined monopoles (magnetic quarks) each carry a combination of Coulomb magnetic flux and magnetic flux tubes, and therefore they do not exist as isolated states. We also display a more elaborate configuration (fang necklace) composed of these magnetic quarks. In contrast to the $SU(5)$ monopole which is superheavy and carries a magnetic charge of $2pi/e$ as well as color magnetic charge, the trinification monopole may have mass in the TeV range, in which case it may be accessible at the LHC and its planned upgrades.

rate research

Read More

We show that axions interacting with abelian gauge fields obtain a potential from loops of magnetic monopoles. This is a consequence of the Witten effect: the axion field causes the monopoles to acquire an electric charge and alters their energy spectrum. The axion potential can also be understood as a type of instanton effect due to a Euclidean monopole worldline winding around its dyon collective coordinate. We calculate this effect, which has features in common with both nonabelian instantons and Euclidean brane instantons. To provide consistency checks, we argue that this axion potential vanishes in the presence of a massless charged fermion and that it is robust against the presence of higher-derivative corrections in the effective Lagrangian. Finally, as a first step toward connecting with particle phenomenology and cosmology, we discuss the regime in which this potential is important in determining the dark matter relic abundance in a hidden sector containing an abelian gauge group, monopoles, and axions.
We study the dynamics of the Nambu monopole in two Higgs doublet models, which is a magnetic monopole attached by two topological $Z$ strings ($Z$ flux tubes) from two opposite sides. The monopole is a topologically stable solution of the equation of motions when the Higgs potential has global $U(1)$ and $mathbb{Z}_2$ symmetries. In this paper, we consider more general cases without the $mathbb{Z}_2$ symmetry, and find that it is no longer a static solution but moves along the $Z$ string being pulled by the heavier string. After analytically constructing an asymptotic form of the monopole, we confirm such a motion using the numerical relaxation method. In addition, we analyze the real time dynamics of the monopole based on a point-like approximation. Consequently, if there were long string networks with the monopoles in the early universe, the monopole accelerates nearly to the speed of light emitting electromagnetic radiations as a synchrotron accelerator, and collides to an anti-monopole on the string. This collision event, which we call the cosmological monopole collider, can produce much heavier particles than those we can see today, e.g., at the Large Hadron Collider.
The Large Hadron Collider is reaching energies never achieved before allowing the search for exotic particles in the TeV mass range. In a continuing effort to find monopoles we discuss the effect of the magnetic dipole field created by a pair of monopole-anti-monopole or monopolium on the successive bunches of charged particles in the beam at LHC.
We compute the magnetic field-induced modifications to the boson self-coupling and the boson-fermion coupling, in the static limit, using an effective model of QCD, the linear sigma model with quarks. The former is computed for arbitrary field strengths as well as using the strong field approximation. The latter is obtained in the strong field limit. The arbitrary field result for the boson self-coupling depends on the ultraviolet renormalization scale and this dependence cannot be removed by a simple vacuum subtraction. Using the strong field result as a guide, we find the appropriate choice for this scale and discuss the physical implications. The boson-fermion coupling depends on the Schwingers phase and we show how this phase can be treated consistently in such a way that the magnetic field induced vertex modification is both gauge invariant and can be written with an explicit factor corresponding to energy-momentum conservation for the external particles. Both couplings show a modest decrease with the field strength.
We propose a new mechanism for generating small neutrino masses which predicts the relation m_ u ~ v^4/M^3, where v is the electroweak scale, rather than the conventional seesaw formula m_ u ~ v^2/M. Such a mass relation is obtained via effective dimension seven operators LLHH(H*H)/M^3, which arise when an isospin 3/2 Higgs multiplet Phi is introduced along with iso-triplet leptons. The masses of these particles are naturally in the TeV scale. The neutral member of Phi acquires an induced vacuum expectation value and generates neutrino masses, while its triply charged partner provides the smoking gun signal of this scenario. These triply charged bosons can be pair produced at the LHC and the Tevatron, with Phi^{+++} decaying into W^+l^+l^+ or W^+W^+W^+, possibly with displaced vertices. The leptonic decays of Phi^{+++} will help discriminate between normal and inverted hierarchies of neutrino masses. This scenario also allows for raising the standard Higgs boson mass to values in excess of 500 GeV.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا