Some fast algorithms multiplying a matrix by its adjoint


Abstract in English

We present a non-commutative algorithm for the multiplication of a 2 x 2 block-matrix by its adjoint, defined by a matrix ring anti-homomorphism. This algorithm uses 5 block products (3 recursive calls and 2 general products)over C or in positive characteristic. The resulting algorithm for arbitrary dimensions is a reduction of multiplication of a matrix by its adjoint to general matrix product, improving by a constant factor previously known reductions. We prove also that there is no algorithm derived from bilinear forms using only four products and the adjoint of one of them. Second we give novel dedicated algorithms for the complex field and the quaternions to alternatively compute the multiplication taking advantage of the structure of the matrix-polynomial arithmetic involved. We then analyze the respective ranges of predominance of the two strategies. Finally we propose schedules with low memory footprint that support a fast and memory efficient practical implementation over a prime field.

Download