Do you want to publish a course? Click here

Creation of double-well potentials in a surface-electrode trap towards a nanofriction model emulator

111   0   0.0 ( 0 )
 Added by Utako Tanaka Dr
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We demonstrate a microfabricated surface-electrode ion trap that is applicable as a nanofriction emulator and studies of many-body dynamics of interacting systems. The trap enables both single-well and double-well trapping potentials in the radial direction, where the distance between the two potential wells can be adjusted by the applied RF voltage. In the double-well configuration, parallel ion strings can be formed, which is a suitable system for the emulation of the Frenkel-Kontorova (FK) model. We derive the condition under which the trap functions as a FK model emulator. The trap is designed so that the Coulomb interaction between two ion strings becomes significant. We report on the microfabrication process for such downsized trap electrodes and experimental results of single-well and double-well operation with calcium ions. With the trap demonstrated in this work we can create atomically accessible, self-assembled Coulomb systems with a wide tuning range of the corrugation parameter in the FK model. This makes it a promising system for quantum simulations, but also for the study of nanofriction in one and higher dimensional systems.



rate research

Read More

289 - G. Ciaramicoli , I. Marzoli , 2010
The new generation of planar Penning traps promises to be a flexible and versatile tool for quantum information studies. Here, we propose a fully controllable and reversible way to change the typical trapping harmonic potential into a double-well potential, in the axial direction. In this configuration a trapped particle can perform coherent oscillations between the two wells. The tunneling rate, which depends on the barrier height and width, can be adjusted at will by varying the potential difference applied to the trap electrodes. Most notably, tunneling rates in the range of kHz are achievable even with a trap size of the order of 100 microns.
129 - G. Shu , G. Vittorini , C. Volin 2014
We measure ion heating following transport throughout a Y-junction surface-electrode ion trap. By carefully selecting the trap voltage update rate during adiabatic transport along a trap arm, we observe minimal heating relative to the anomalous heating background. Transport through the junction results in an induced heating between 37 and 150 quanta in the axial direction per traverse. To reliably measure heating in this range, we compare the experimental sideband envelope, including up to fourth-order sidebands, to a theoretical model. The sideband envelope method allows us to cover the intermediate heating range inaccessible to the first-order sideband and Doppler recooling methods. We conclude that quantum information processing in this ion trap will likely require sympathetic cooling in order to support high fidelity gates after junction transport.
We investigate anomalous ion-motional heating, a limitation to multi-qubit quantum-logic gate fidelity in trapped-ion systems, as a function of ion-electrode separation. Using a multi-zone surface-electrode trap in which ions can be held at five discrete distances from the metal electrodes, we measure power-law dependencies of the electric-field noise experienced by the ion on the ion-electrode distance $d$. We find a scaling of approximately $d^{-4}$ regardless of whether the electrodes are at room temperature or cryogenic temperature, despite the fact that the heating rates are approximately two orders of magnitude smaller in the latter case. Through auxiliary measurements using application of noise to the electrodes, we rule out technical limitations to the measured heating rates and scalings. We also measure frequency scaling of the inherent electric-field noise close to $1/f$ at both temperatures. These measurements eliminate from consideration anomalous-heating models which do not have a $d^{-4}$ distance dependence, including several microscopic models of current interest.
Two-dimensional crystals of trapped ions are a promising system with which to implement quantum simulations of challenging problems such as spin frustration. Here, we present a design for a surface-electrode elliptical ion trap which produces a 2-D ion crystal and is amenable to microfabrication, which would enable higher simulated coupling rates, as well as interactions based on magnetic forces generated by on-chip currents. Working in an 11 K cryogenic environment, we experimentally verify to within 5% a numerical model of the structure of ion crystals in the trap. We also explore the possibility of implementing quantum simulation using magnetic forces, and calculate J-coupling rates on the order of 10^3 / s for an ion crystal height of 10 microns, using a current of 1 A.
We describe the design, fabrication, and operation of a novel surface-electrode Paul trap that produces a radio-frequency-null along the axis perpendicular to the trap surface. This arrangement enables control of the vertical trapping potential and consequentially the ion-electrode distance via dc-electrodes only. We demonstrate confinement of single $^{40}$Ca$^+$ ions at heights between $50~mu$m and $300~mu$m above planar copper-coated aluminium electrodes. We investigate micromotion in the vertical direction and show cooling of both the planar and vertical motional modes into the ground state. This trap architecture provides a platform for precision electric-field noise detection, trapping of vertical ion strings without excess micromotion, and may have applications for scalable quantum computers with surface ion traps.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا