Rare-earth (RE) based frustrated magnets as typical systems of combining strong spin-orbit coupling, geometric frustration and anisotropic exchange interactions, can give rise to diverse exotic magnetic ground states such as quantum spin liquid (QSL). The discovery of new RE-based frustrated materials is crucial for exploring the exotic magnetic phases. Herein, we report the synthesis, structure and magnetic properties of a family of melilite-type RE2Be2GeO7 (RE = Pr, Nd, Gd-Yb) compounds crystallized in a tetragonal structure, where magnetic RE3+ ions lay out on Shastry-Sutherland lattice (SSL) within ab-plane and are well separated by nonmagnetic GeBe2O7 polyhedrons along c-axis. Temperature-dependent susceptibilities and isothermal magnetization M(H) measurements reveal that most RE2Be2GeO7 compounds except RE=Tb show no magnetic ordering down to 2 K despite the dominant antiferromagnetic (AFM) interactions, where Tb2Be2GeO7 undergoes AFM transition with Neel temperature TN~ 2.5 K and field-induced spin flop behaviors (T< TN). In addition, the calculated magnetic entropy change from the isothermal M(H) curves reveal a viable magnetocaloric effect (MCE) for RE2Be2GeO7 (RE =Gd, Dy) in liquid helium temperature regimes, Gd2Be2GeO7 shows maximum Sm up to 54.8 J K-1 Kg-1 at H= 7 T and Dy2Be2GeO7 has largest value Sm=16.1 J K-1 kg-1 at H= 2 T in this family. More excitingly, rich diversity of RE ions in this family enables an archetype for exploring exotic quantum magnetic phenomena with large variability of spin located on SSL lattice.