Do you want to publish a course? Click here

Temperature dependent moire trapping of interlayer excitons in MoSe2-WSe2 heterostructures

84   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

MoSe2-WSe2 heterostructures host strongly bound interlayer excitons (IXs) which exhibit bright photoluminescence (PL) when the twist-angle is near 0{deg} or 60{deg}. Over the past several years, there have been numerous reports on the optical response of these heterostructures but no unifying model to understand the dynamics of IXs and their temperature dependence. Here, we perform a comprehensive study of the temperature, excitation power, and time-dependent PL of IXs. We observe a significant decrease in PL intensity above a transition temperature that we attribute to a transition from localized to delocalized IXs. Astoundingly, we find a simple inverse relationship between the IX PL energy and the transition temperature, which exhibits opposite power dependent behaviors for near 0{deg} and 60{deg} samples. We conclude that this temperature dependence is a result of IX-IX exchange interactions, whose effect is suppressed by the moire potential trapping IXs at low temperature.



rate research

Read More

Two-dimensional (2D) materials, such as graphene1, boron nitride2, and transition metal dichalcogenides (TMDs)3-5, have sparked wide interest in both device physics and technological applications at the atomic monolayer limit. These 2D monolayers can be stacked together with precise control to form novel van der Waals heterostructures for new functionalities2,6-9. One highly coveted but yet to be realized heterostructure is that of differing monolayer TMDs with type II band alignment10-12. Their application potential hinges on the fabrication, understanding, and control of bonded monolayers, with bound electrons and holes localized in individual monolayers, i.e. interlayer excitons. Here, we report the first observation of interlayer excitons in monolayer MoSe2-WSe2 heterostructures by both photoluminescence and photoluminescence excitation spectroscopy. The energy and luminescence intensity of interlayer excitons are highly tunable by an applied vertical gate voltage, implying electrical control of the heterojunction band-alignment. Using time resolved photoluminescence, we find that the interlayer exciton is long-lived with a lifetime of about 1.8 ns, an order of magnitude longer than intralayer excitons13-16. Our work demonstrates the ability to optically pump interlayer electric polarization and provokes the immediate exploration of interlayer excitons for condensation phenomena, as well as new applications in 2D light-emitting diodes, lasers, and photovoltaic devices.
Moire superlattices provide a powerful way to engineer properties of electrons and excitons in two-dimensional van der Waals heterostructures. The moire effect can be especially strong for interlayer excitons, where electrons and holes reside in different layers and can be addressed separately. In particular, it was recently proposed that the moire superlattice potential not only localizes interlayer exciton states at different superlattice positions, but also hosts an emerging moire quasi-angular momentum (QAM) that periodically switches the optical selection rules for interlayer excitons at different moire sites. Here we report the observation of multiple interlayer exciton states coexisting in a WSe2/WS2 moire superlattice and unambiguously determine their spin, valley, and moire QAM through novel resonant optical pump-probe spectroscopy and photoluminescence excitation spectroscopy. We demonstrate that interlayer excitons localized at different moire sites can exhibit opposite optical selection rules due to the spatially-varying moire QAM. Our observation reveals new opportunities to engineer interlayer exciton states and valley physics with moire superlattices for optoelectronic and valleytronic applications.
Charge separated interlayer excitons in transition metal dichalcogenide (TMDC) heterobilayers are being explored for moire exciton lattices and exciton condensates. The presence of permanent dipole moments and the poorly screened Coulomb interaction make many body interactions particularly strong for interlayer excitons. Here we reveal two distinct phase transitions for interlayer excitons in the MoSe2/WSe2 heterobilayer using time and spatially resolved photoluminescence imaging: from trapped excitons in the moire-potential to the modestly mobile exciton gas as exciton density increases to ne/h ~ 1011 cm-2 and from the exciton gas to the highly mobile charge separated electron/hole plasma for ne/h > 1012 cm-2. The latter is the Mott transition and is confirmed in photoconductivity measurements. These findings set fundamental limits for achieving quantum states of interlayer excitons.
Transition metal dichalcogenides (TMDCs) heterostructure with a type II alignment hosts unique interlayer excitons with the possibility of spin-triplet and spin-singlet states. However, the associated spectroscopy signatures remain elusive, strongly hindering the understanding of the Moire potential modulation of the interlayer exciton. In this work, we unambiguously identify the spin-singlet and spin-triplet interlayer excitons in the WSe2/MoSe2 hetero-bilayer with a 60-degree twist angle through the gate- and magnetic field-dependent photoluminescence spectroscopy. Both the singlet and triplet interlayer excitons show giant valley-Zeeman splitting between the K and K valleys, a result of the large Lande g-factor of the singlet interlayer exciton and triplet interlayer exciton, which are experimentally determined to be ~ 10.7 and ~ 15.2, respectively, in good agreement with theoretical expectation. The PL from the singlet and triplet interlayer excitons show opposite helicities, determined by the atomic registry. Helicity-resolved photoluminescence excitation (PLE) spectroscopy study shows that both singlet and triplet interlayer excitons are highly valley-polarized at the resonant excitation, with the valley polarization of the singlet interlayer exciton approaches unity at ~ 20 K. The highly valley-polarized singlet and triplet interlayer excitons with giant valley-Zeeman splitting inspire future applications in spintronics and valleytronics.
Atomically thin layered two dimensional (2D) material has provided a rich library for both fundamental research and device applications. One of the special advantages is that, bandgap engineering and controlled material response can be achieved by stacking different 2D materials. Recently several types of excitonic lasers have been reported based on Transition metal dichalcogenide (TMDC) monolayers, however, the emission is still the intrinsic energy bandgap of the monolayers and lasers harnessing the flexibility of Van der Waals heterostructures have not been demonstrated yet. Here, we report for the first time a room temperature interlayer exciton laser with MoS2/WSe2 heterostructures. The onset of lasing action was identified by a combination of distinct kink in the L-L curve and the noticeable collapse of spectral linewidth. Different from visible emission of intralayer excitons for both MoS2 and WSe2, our interlayer exciton laser works in the infrared range, which is fully compatible with the well-established technologies in silicon photonics. Thanks to the long lifetime of interlayer excitons, the requirement of the cavity quality factor is relaxed by orders of magnitude. The demonstration of room temperature interlayer exciton laser might open new perspectives for the development of coherent light source with tailored optical properties on silicon photonics platform.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا