Do you want to publish a course? Click here

An automatic procedure to determine groups of nonparametric regression curves

77   0   0.0 ( 0 )
 Added by Nora M. Villanueva
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

In many situations it could be interesting to ascertain whether nonparametric regression curves can be grouped, especially when confronted with a considerable number of curves. The proposed testing procedure allows to determine groups with an automatic selection of their number. A simulation study is presented in order to investigate the finite sample properties of the proposed methods when compared to existing alternative procedures. Finally, the applicability of the procedure to study the geometry of a tunnel by analysing a set of cross-sections is demonstrated. The results obtained show the existence of some heterogeneity in the tunnel geometry.



rate research

Read More

We propose a penalized likelihood method that simultaneously fits the multinomial logistic regression model and combines subsets of the response categories. The penalty is non differentiable when pairs of columns in the optimization variable are equal. This encourages pairwise equality of these columns in the estimator, which corresponds to response category combination. We use an alternating direction method of multipliers algorithm to compute the estimator and we discuss the algorithms convergence. Prediction and model selection are also addressed.
259 - Jean Feng , Noah Simon 2017
Neural networks are usually not the tool of choice for nonparametric high-dimensional problems where the number of input features is much larger than the number of observations. Though neural networks can approximate complex multivariate functions, they generally require a large number of training observations to obtain reasonable fits, unless one can learn the appropriate network structure. In this manuscript, we show that neural networks can be applied successfully to high-dimensional settings if the true function falls in a low dimensional subspace, and proper regularization is used. We propose fitting a neural network with a sparse group lasso penalty on the first-layer input weights. This results in a neural net that only uses a small subset of the original features. In addition, we characterize the statistical convergence of the penalized empirical risk minimizer to the optimal neural network: we show that the excess risk of this penalized estimator only grows with the logarithm of the number of input features; and we show that the weights of irrelevant features converge to zero. Via simulation studies and data analyses, we show that these sparse-input neural networks outperform existing nonparametric high-dimensional estimation methods when the data has complex higher-order interactions.
In many applications there is interest in estimating the relation between a predictor and an outcome when the relation is known to be monotone or otherwise constrained due to the physical processes involved. We consider one such application--inferring time-resolved aerosol concentration from a low-cost differential pressure sensor. The objective is to estimate a monotone function and make inference on the scaled first derivative of the function. We proposed Bayesian nonparametric monotone regression which uses a Bernstein polynomial basis to construct the regression function and puts a Dirichlet process prior on the regression coefficients. The base measure of the Dirichlet process is a finite mixture of a mass point at zero and a truncated normal. This construction imposes monotonicity while clustering the basis functions. Clustering the basis functions reduces the parameter space and allows the estimated regression function to be linear. With the proposed approach we can make closed-formed inference on the derivative of the estimated function including full quantification of uncertainty. In a simulation study the proposed method performs similar to other monotone regression approaches when the true function is wavy but performs better when the true function is linear. We apply the method to estimate time-resolved aerosol concentration with a newly-developed portable aerosol monitor. The R package bnmr is made available to implement the method.
We propose a novel broadcasting idea to model the nonlinearity in tensor regression non-parametrically. Unlike existing non-parametric tensor regression models, the resulting model strikes a good balance between flexibility and interpretability. A penalized estimation and corresponding algorithm are proposed. Our theoretical investigation, which allows the dimensions of the tensor covariate to diverge, indicates that the proposed estimation enjoys a desirable convergence rate. We also provide a minimax lower bound, which characterizes the optimality of the proposed estimator in a wide range of scenarios. Numerical experiments are conducted to confirm the theoretical finding and show that the proposed model has advantages over existing linear counterparts.
A simple Bayesian approach to nonparametric regression is described using fuzzy sets and membership functions. Membership functions are interpreted as likelihood functions for the unknown regression function, so that with the help of a reference prior they can be transformed to prior density functions. The unknown regression function is decomposed into wavelets and a hierarchical Bayesian approach is employed for making inferences on the resulting wavelet coefficients.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا