No Arabic abstract
Solving algebra story problems remains a challenging task in artificial intelligence, which requires a detailed understanding of real-world situations and a strong mathematical reasoning capability. Previous neural solvers of math word problems directly translate problem texts into equations, lacking an explicit interpretation of the situations, and often fail to handle more sophisticated situations. To address such limits of neural solvers, we introduce the concept of a emph{situation model}, which originates from psychology studies to represent the mental states of humans in problem-solving, and propose emph{SMART}, which adopts attributed grammar as the representation of situation models for algebra story problems. Specifically, we first train an information extraction module to extract nodes, attributes, and relations from problem texts and then generate a parse graph based on a pre-defined attributed grammar. An iterative learning strategy is also proposed to improve the performance of SMART further. To rigorously study this task, we carefully curate a new dataset named emph{ASP6.6k}. Experimental results on ASP6.6k show that the proposed model outperforms all previous neural solvers by a large margin while preserving much better interpretability. To test these models generalization capability, we also design an out-of-distribution (OOD) evaluation, in which problems are more complex than those in the training set. Our model exceeds state-of-the-art models by 17% in the OOD evaluation, demonstrating its superior generalization ability.
Story generation, namely generating a reasonable story from a leading context, is an important but challenging task. In spite of the success in modeling fluency and local coherence, existing neural language generation models (e.g., GPT-2) still suffer from repetition, logic conflicts, and lack of long-range coherence in generated stories. We conjecture that this is because of the difficulty of associating relevant commonsense knowledge, understanding the causal relationships, and planning entities and events with proper temporal order. In this paper, we devise a knowledge-enhanced pretraining model for commonsense story generation. We propose to utilize commonsense knowledge from external knowledge bases to generate reasonable stories. To further capture the causal and temporal dependencies between the sentences in a reasonable story, we employ multi-task learning which combines a discriminative objective to distinguish true and fake stories during fine-tuning. Automatic and manual evaluation shows that our model can generate more reasonable stories than state-of-the-art baselines, particularly in terms of logic and global coherence.
Large-scale pretrained language models have shown thrilling generation capabilities, especially when they generate consistent long text in thousands of words with ease. However, users of these models can only control the prefix of sentences or certain global aspects of generated text. It is challenging to simultaneously achieve fine-grained controllability and preserve the state-of-the-art unconditional text generation capability. In this paper, we first propose a new task named Outline to Story (O2S) as a test bed for fine-grained controllable generation of long text, which generates a multi-paragraph story from cascaded events, i.e. a sequence of outline events that guide subsequent paragraph generation. We then create dedicate datasets for future benchmarks, built by state-of-the-art keyword extraction techniques. Finally, we propose an extremely simple yet strong baseline method for the O2S task, which fine tunes pre-trained language models on augmented sequences of outline-story pairs with simple language modeling objective. Our method does not introduce any new parameters or perform any architecture modification, except several special tokens as delimiters to build augmented sequences. Extensive experiments on various datasets demonstrate state-of-the-art conditional story generation performance with our model, achieving better fine-grained controllability and user flexibility. Our paper is among the first ones by our knowledge to propose a model and to create datasets for the task of outline to story. Our work also instantiates research interest of fine-grained controllable generation of open-domain long text, where controlling inputs are represented by short text.
We present GraPPa, an effective pre-training approach for table semantic parsing that learns a compositional inductive bias in the joint representations of textual and tabular data. We construct synthetic question-SQL pairs over high-quality tables via a synchronous context-free grammar (SCFG) induced from existing text-to-SQL datasets. We pre-train our model on the synthetic data using a novel text-schema linking objective that predicts the syntactic role of a table field in the SQL for each question-SQL pair. To maintain the models ability to represent real-world data, we also include masked language modeling (MLM) over several existing table-and-language datasets to regularize the pre-training process. On four popular fully supervised and weakly supervised table semantic parsing benchmarks, GraPPa significantly outperforms RoBERTa-large as the feature representation layers and establishes new state-of-the-art results on all of them.
We investigate large-scale latent variable models (LVMs) for neural story generation -- an under-explored application for open-domain long text -- with objectives in two threads: generation effectiveness and controllability. LVMs, especially the variational autoencoder (VAE), have achieved both effective and controllable generation through exploiting flexible distributional latent representations. Recently, Transformers and its variants have achieved remarkable effectiveness without explicit latent representation learning, thus lack satisfying controllability in generation. In this paper, we advocate to revive latent variable modeling, essentially the power of representation learning, in the era of Transformers to enhance controllability without hurting state-of-the-art generation effectiveness. Specifically, we integrate latent representation vectors with a Transformer-based pre-trained architecture to build conditional variational autoencoder (CVAE). Model components such as encoder, decoder and the variational posterior are all built on top of pre-trained language models -- GPT2 specifically in this paper. Experiments demonstrate state-of-the-art conditional generation ability of our model, as well as its excellent representation learning capability and controllability.
Long-form narrative text generated from large language models manages a fluent impersonation of human writing, but only at the local sentence level, and lacks structure or global cohesion. We posit that many of the problems of story generation can be addressed via high-quality content planning, and present a system that focuses on how to learn good plot structures to guide story generation. We utilize a plot-generation language model along with an ensemble of rescoring models that each implement an aspect of good story-writing as detailed in Aristotles Poetics. We find that stories written with our more principled plot-structure are both more relevant to a given prompt and higher quality than baselines that do not content plan, or that plan in an unprincipled way.