Do you want to publish a course? Click here

Deep Learning Framework Applied for Predicting Anomaly of Respiratory Sounds

164   0   0.0 ( 0 )
 Added by Thanh Dat Ngo
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

This paper proposes a robust deep learning framework used for classifying anomaly of respiratory cycles. Initially, our framework starts with front-end feature extraction step. This step aims to transform the respiratory input sound into a two-dimensional spectrogram where both spectral and temporal features are well presented. Next, an ensemble of C- DNN and Autoencoder networks is then applied to classify into four categories of respiratory anomaly cycles. In this work, we conducted experiments over 2017 Internal Conference on Biomedical Health Informatics (ICBHI) benchmark dataset. As a result, we achieve competitive performances with ICBHI average score of 0.49, ICBHI harmonic score of 0.42.



rate research

Read More

Intelligent systems are transforming the world, as well as our healthcare system. We propose a deep learning-based cough sound classification model that can distinguish between children with healthy versus pathological coughs such as asthma, upper respiratory tract infection (URTI), and lower respiratory tract infection (LRTI). In order to train a deep neural network model, we collected a new dataset of cough sounds, labelled with clinicians diagnosis. The chosen model is a bidirectional long-short term memory network (BiLSTM) based on Mel Frequency Cepstral Coefficients (MFCCs) features. The resulting trained model when trained for classifying two classes of coughs -- healthy or pathology (in general or belonging to a specific respiratory pathology), reaches accuracy exceeding 84% when classifying cough to the label provided by the physicians diagnosis. In order to classify subjects respiratory pathology condition, results of multiple cough epochs per subject were combined. The resulting prediction accuracy exceeds 91% for all three respiratory pathologies. However, when the model is trained to classify and discriminate among the four classes of coughs, overall accuracy dropped: one class of pathological coughs are often misclassified as other. However, if one consider the healthy cough classified as healthy and pathological cough classified to have some kind of pathologies, then the overall accuracy of four class model is above 84%. A longitudinal study of MFCC feature space when comparing pathological and recovered coughs collected from the same subjects revealed the fact that pathological cough irrespective of the underlying conditions occupy the same feature space making it harder to differentiate only using MFCC features.
Activity recognition is the ability to identify and recognize the action or goals of the agent. The agent can be any object or entity that performs action that has end goals. The agents can be a single agent performing the action or group of agents performing the actions or having some interaction. Human activity recognition has gained popularity due to its demands in many practical applications such as entertainment, healthcare, simulations and surveillance systems. Vision based activity recognition is gaining advantage as it does not require any human intervention or physical contact with humans. Moreover, there are set of cameras that are networked with the intention to track and recognize the activities of the agent. Traditional applications that were required to track or recognize human activities made use of wearable devices. However, such applications require physical contact of the person. To overcome such challenges, vision based activity recognition system can be used, which uses a camera to record the video and a processor that performs the task of recognition. The work is implemented in two stages. In the first stage, an approach for the Implementation of Activity recognition is proposed using background subtraction of images, followed by 3D- Convolutional Neural Networks. The impact of using Background subtraction prior to 3D-Convolutional Neural Networks has been reported. In the second stage, the work is further extended and implemented on Raspberry Pi, that can be used to record a stream of video, followed by recognizing the activity that was involved in the video. Thus, a proof-of-concept for activity recognition using small, IoT based device, is provided, which can enhance the system and extend its applications in various forms like, increase in portability, networking, and other capabilities of the device.
In this work, we explore different approaches to combine modalities for the problem of automated age-suitability rating of movie trailers. First, we introduce a new dataset containing videos of movie trailers in English downloaded from IMDB and YouTube, along with their corresponding age-suitability rating labels. Secondly, we propose a multi-modal deep learning pipeline addressing the movie trailer age suitability rating problem. This is the first attempt to combine video, audio, and speech information for this problem, and our experimental results show that multi-modal approaches significantly outperform the best mono and bimodal models in this task.
It has long been recognized that academic success is a result of both cognitive and non-cognitive dimensions acting together. Consequently, any intelligent learning platform designed to improve learning outcomes (LOs) must provide actionable inputs to the learner in these dimensions. However, operationalizing such inputs in a production setting that is scalable is not trivial. We develop an Embibe Score Quotient model (ESQ) to predict test scores based on observed academic, behavioral and test-taking features of a student. ESQ can be used to predict the future scoring potential of a student as well as offer personalized learning nudges, both critical to improving LOs. Multiple machine learning models are evaluated for the prediction task. In order to provide meaningful feedback to the learner, individualized Shapley feature attributions for each feature are computed. Prediction intervals are obtained by applying non-parametric quantile regression, in an attempt to quantify the uncertainty in the predictions. We apply the above modelling strategy on a dataset consisting of more than a hundred million learner interactions on the Embibe learning platform. We observe that the Median Absolute Error between the observed and predicted scores is 4.58% across several user segments, and the correlation between predicted and observed responses is 0.93. Game-like what-if scenarios are played out to see the changes in LOs, on counterfactual examples. We briefly discuss how a rational agent can then apply an optimal policy to affect the learning outcomes by treating the above model like an Oracle.
Deep Learning has attracted considerable attention across multiple application domains, including computer vision, signal processing and natural language processing. Although quite a few single node deep learning frameworks exist, such as tensorflow, pytorch and keras, we still lack a complete processing structure that can accommodate large scale data processing, version control, and deployment, all while staying agnostic of any specific single node framework. To bridge this gap, this paper proposes a new, higher level framework, i.e. Nemesyst, which uses databases along with model sequentialisation to allow processes to be fed unique and transformed data at the point of need. This facilitates near real-time application and makes models available for further training or use at any node that has access to the database simultaneously. Nemesyst is well suited as an application framework for internet of things aggregated control systems, deploying deep learning techniques to optimise individual machines in massive networks. To demonstrate this framework, we adopted a case study in a novel domain; deploying deep learning to optimise the high speed control of electrical power consumed by a massive internet of things network of retail refrigeration systems in proportion to load available on the UK National Grid (a demand side response). The case study demonstrated for the first time in such a setting how deep learning models, such as Recurrent Neural Networks (vanilla and Long-Short-Term Memory) and Generative Adversarial Networks paired with Nemesyst, achieve compelling performance, whilst still being malleable to future adjustments as both the data and requirements inevitably change over time.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا