Frames over finite fields: Equiangular lines in orthogonal geometry


Abstract in English

We investigate equiangular lines in finite orthogonal geometries, focusing specifically on equiangular tight frames (ETFs). In parallel with the known correspondence between real ETFs and strongly regular graphs (SRGs) that satisfy certain parameter constraints, we prove that ETFs in finite orthogonal geometries are closely aligned with a modular generalization of SRGs. The constraints in our finite field setting are weaker, and all but~18 known SRG parameters on $v leq 1300$ vertices satisfy at least one of them. Applying our results to triangular graphs, we deduce that Gerzons bound is attained in finite orthogonal geometries of infinitely many dimensions. We also demonstrate connections with real ETFs, and derive necessary conditions for ETFs in finite orthogonal geometries. As an application, we show that Gerzons bound cannot be attained in a finite orthogonal geometry of dimension~5.

Download