No Arabic abstract
Applying a magnetic field in the hexagonal plane of YMn$_6$Sn$_6$ leads to a complex magnetic phase diagram of commensurate and incommensurate phases, one of which coexists with the topological Hall effect (THE) generated by a unique fluctuation-driven mechanism. Using unpolarized neutron diffraction, we report on the solved magnetic structure for two previously identified, but unknown, commensurate phases. These include a low-temperature, high-field fan-like phase and a room-temperature, low-field canted antiferromagnetic phase. An intermediate incommensurate phase between the fan-like and forced ferromagnetic phases is also identified as the last known phase of the in-plane field-temperature diagram. Additional characterization using synchrotron powder diffraction reveals extremely high-quality, single-phase crystals, which suggests that the presence of two incommensurate magnetic structures throughout much of the phase diagram is an intrinsic property of the system. Interestingly, polarized neutron diffraction shows that the centrosymmetric system hosts preferential chirality in the zero-field double-flat-spiral phase, which, along with the THE, is a topologically non-trivial characteristic.
The synthesis and characterization of vanadium-based kagome metals YV$_6$Sn$_6$ and GdV$_6$Sn$_6$ are presented. X-ray diffraction, magnetization, magnetotransport, and heat capacity measurements reveal an ideal kagome network of V-ions coordinated by Sn and separated by triangular lattice planes of rare-earth ions. The onset of low-temperature, likely noncollinear, magnetic order of Gd spins is detected in GdV$_6$Sn$_6$, while V-ions in both compounds remain nonmagnetic. Density functional theory calculations are presented modeling the band structures of both compounds, which can be classified as $mathbb{Z}_2$ topological metals in the paramagnetic state. Both compounds exhibit high mobility, multiband transport and present an interesting platform for controlling the interplay between magnetic order associated with the $R$-site sublattice and nontrivial band topology associated with the V-based kagome network. Our results invite future exploration of other $R$V$_6$Sn$_6$ ($R$=rare earth) variants where this interplay can be tuned via $R$-site substitution.
We present magnetotransport data on the ferrimagnet GdMn$_6$Sn$_6$. From the temperature dependent data we are able to extract a large instrinsic contribution to the anomalous Hall effect $sigma_{xz}^{int} sim$ 32 $Omega^{-1}cm^{-1}$ and $sigma_{xy}^{int} sim$ 223 $Omega^{-1}cm^{-1}$, which is comparable to values found in other systems also containing kagome nets of transition metals. From our transport anisotropy, as well as our density functional theory calculations, we argue that the system is electronically best described as a three dimensional system. Thus, we show that reduced dimensionality is not a strong requirement for obtaining large Berry phase contributions to transport properties. In addition, the coexistence of rare-earth and transition metal magnetism makes the hexagonal MgFe$_6$Ge$_6$ structure type a promising system to tune the electronic and magnetic properties in future studies.
We report magnetic and electrical properties for single crystals of NdMn$_6$Sn$_6$ and SmMn$_6$Sn$_6$. They crystallize into a structure which has distorted, Mn-based kagome lattices, compared to the pristine kagome lattices in heavy-rare-earth-bearing RMn$_6$Sn$_6$ compounds. They are hightemperature ferromagnets of which the R moment is parallel with the Mn moment. We observed a large intrinsic anomalous Hall effect (AHE) that is comparable to the ferrimagnetic, heavy-R siblings in a wide range of temperature. We conclude that their intrinsic AHE is stemming from the Mn-based kagome lattice, just as in the heavy RMn$_6$Sn$_6$.
A new type of topological state in strongly corrected condensed matter systems, heavy Weyl fermion state, has been found in a heavy fermion material CeRu$_4$Sn$_6$, which has no inversion symmetry. Both two different types of Weyl points, type I and II, can be found in the quasi-particle band structure obtained by the LDA+Guztwiller calculations, which can treat the strong correlation effects among the f-electrons from Cerium atoms. The surface calculations indicate that the topologically protected Fermi arc states exist on the (010) but not on the (001) surfaces.
Using single crystal neutron scattering we show that the magnetic structure Ni$_3$TeO$_6$ at fields above 8.6 T along the $c$ axis changes from a commensurate collinear antiferromagnetic structure with spins along c and ordering vector $Q_C$= (0 0 1.5), to a conical spiral with propagation vector $Q_{IC}$= (0 0 1.5$pmdelta$),$deltasim$0.18, having a significant spin component in the ($a$,$b$) plane. We determine the phase diagram of this material in magnetic fields up to 10.5 T along $c$ and show the phase transition between the low field and conical spiral phases is of first order by observing a discontinuous jump of the ordering vector. $Q_{IC}$ is found to drift both as function of magnetic field and temperature. Preliminary inelastic neutron scattering reveals that the spin wave gap in zero field has minima exactly at $Q_{IC}$ and a gap of about 1.1 meV consisting with a cross-over around 8.6 T. Our findings excludes the possibility of the inverse Dzyaloshinskii-Moriya interaction as a cause for the giant magneto-electric coupling earlier observed in this material and advocates for the symmetric exchangestriction as the origin of this effect.