Tracking the electronic oscillation in molecule with tunneling microscopy


Abstract in English

Visualizing and controlling electron dynamics over femtosecond timescale play a key role in the design of next-generation electronic devices. Using simulations, we demonstrate the electronic oscillation inside the naphthalene molecule can be tracked by means of the tuning of delay time between two identical femtosecond laser pulses. Both the frequency and decay time of the oscillation are detected by the tunneling charge through the junction of scanning tunneling microscopy. And the tunneling charge is sensitive to the carrier-envelope phase (CEP) for few-cycle long optical pulses. While this sensitivity to CEP will disappear with the increase of time-length of pulses. Our simulation results show that it is possible to visualize and control the electron dynamics inside the molecule by one or two femtosecond laser pulses.

Download