Do you want to publish a course? Click here

Maximising Dynamic Nuclear Polarisation via Selective Hyperfine Tuning

107   0   0.0 ( 0 )
 Added by Liam Hall
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dynamic nuclear polarisation (DNP) refers to a class of techniques used to increase the signal in nuclear magnetic resonance measurements by transferring spin polarisation from ensembles of highly polarised electrons to target nuclear analytes. These techniques, however, require the application of strong magnetic fields to maximise electron spin polarisation, limiting pathways for electron-nuclear (hyperfine) spin coupling and transfer. In this work we show that, for systems of electronic spin $Sgeq1$ possessing an intrinsic zero-field splitting, a separate class of stronger hyperfine interactions based on lab-frame cross relaxation may be utilised to improve DNP efficiency and yield, whilst operating at moderate fields. We analytically review existing methods, and determine that this approach increases the rate of polarisation transfer to the nuclear ensemble by up to an order of magnitude over existing techniques. This result is demonstrated experimentally at room temperature using the optically polarisable $S=1$ electron spin system of the nitrogen vacancy (NV) defect in diamond as the source of electron spin polarisation. Finally we assess the utility of these NV-based approaches for the polarisation of macroscopic quantities of molecular spins external to the diamond for NMR and MRI applications.



rate research

Read More

The sensitivity of Magnetic Resonance Imaging (MRI) depends strongly on nuclear spin polarisation and, motivated by this observation, dynamical nuclear spin polarisation has recently been applied to enhance MRI protocols (Kurhanewicz, J., et al., Neoplasia 13, 81 (2011)). Nuclear spins associated with the 13 C carbon isotope (nuclear spin I = 1/2) in diamond possess uniquely long spin lattice relaxation times (Reynhardt, E.C. and G.L. High, Prog. in Nuc. Mag. Res. Sp. 38, 37 (2011)) If they are present in diamond nanocrystals, especially when strongly polarised, they form a promising contrast agent for MRI. Current schemes for achieving nuclear polarisation, however, require cryogenic temperatures. Here we demonstrate an efficient scheme that realises optically induced 13 C nuclear spin hyperpolarisation in diamond at room temperature and low ambient magnetic field. Optical pumping of a Nitrogen-Vacancy (NV) centre creates a continuously renewable electron spin polarisation which can be transferred to surrounding 13 C nuclear spins. Importantly for future applications we also realise polarisation protocols that are robust against an unknown misalignment between magnetic field and crystal axis.
Precise knowledge of a quantum systems Hamiltonian is a critical pre-requisite for its use in many quantum information technologies. Here, we report a method for the precise characterization of the non-secular part of the excited-state Hamiltonian of an electronic-nuclear spin system in diamond. The method relies on the investigation of the dynamic nuclear polarization mediated by the electronic spin, which is currently exploited as a primary tool for initializing nuclear qubits and performing enhanced nuclear magnetic resonance. By measuring the temporal evolution of the population of the ground-state hyperfine levels of a nitrogen-vacancy center, we obtain the first direct estimation of the excited-state transverse hyperfine coupling between its electronic and nitrogen nuclear spin. Our method could also be applied to other electron-nuclear spin systems, such as those related to defects in silicon carbide.
We experimentally study the coupling of Group V donor spins in silicon to mechanical strain, and measure strain-induced frequency shifts which are linear in strain, in contrast to the quadratic dependence predicted by the valley repopulation model (VRM), and therefore orders of magnitude greater than that predicted by the VRM for small strains $|varepsilon| < 10^{-5}$. Through both tight-binding and first principles calculations we find that these shifts arise from a linear tuning of the donor hyperfine interaction term by the hydrostatic component of strain and achieve semi-quantitative agreement with the experimental values. Our results provide a framework for making quantitative predictions of donor spins in silicon nanostructures, such as those being used to develop silicon-based quantum processors and memories. The strong spin-strain coupling we measure (up to 150~GHz per strain, for Bi-donors in Si), offers a method for donor spin tuning --- shifting Bi donor electron spins by over a linewidth with a hydrostatic strain of order $10^{-6}$ --- as well as opportunities for coupling to mechanical resonators.
Color-center-hosting semiconductors are emerging as promising source materials for low-field dynamic nuclear polarization (DNP) at or near room temperature, but hyperfine broadening, susceptibility to magnetic field heterogeneity, and nuclear spin relaxation induced by other paramagnetic defects set practical constraints difficult to circumvent. Here, we explore an alternate route to color-center-assisted DNP using nitrogen-vacancy (NV) centers in diamond coupled to substitutional nitrogen impurities, the so-called P1 centers. Working near the level anti-crossing condition - where the P1 Zeeman splitting matches one of the NV spin transitions - we demonstrate efficient microwave-free 13C DNP through the use of consecutive magnetic field sweeps and continuous optical excitation. The amplitude and sign of the polarization can be controlled by adjusting the low-to-high and high-to-low magnetic field sweep rates in each cycle so that one is much faster than the other. By comparing the 13C DNP response for different crystal orientations, we show that the process is robust to magnetic field/NV misalignment, a feature that makes the present technique suitable to diamond powders and settings where the field is heterogeneous. Applications to shallow NVs could capitalize on the greater physical proximity between surface paramagnetic defects and outer nuclei to efficiently polarize target samples in contact with the diamond crystal.
We propose a new method for dynamic nuclear polarisation in a quasi one-dimensional quantum wire utilising the spin-orbit interaction, the hyperfine interaction, and a finite source-drain potential difference. In contrast with current methods, our scheme does not rely on external magnetic or optical sources which makes independent control of closely placed devices much more feasible. Using this method, a significant polarisation of a few per cent is possible in currently available InAs wires which may be detected by conductance measurements. This may prove useful for nuclear-magnetic-resonance studies in nanoscale systems as well as in spin-based devices where external magnetic and optical sources will not be suitable.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا