No Arabic abstract
Reference expression comprehension (REC) aims to find the location that the phrase refer to in a given image. Proposal generation and proposal representation are two effective techniques in many two-stage REC methods. However, most of the existing works only focus on proposal representation and neglect the importance of proposal generation. As a result, the low-quality proposals generated by these methods become the performance bottleneck in REC tasks. In this paper, we reconsider the problem of proposal generation, and propose a novel phrase-guided proposal generation network (PPGN). The main implementation principle of PPGN is refining visual features with text and generate proposals through regression. Experiments show that our method is effective and achieve SOTA performance in benchmark datasets.
Referring expression comprehension (REC) and segmentation (RES) are two highly-related tasks, which both aim at identifying the referent according to a natural language expression. In this paper, we propose a novel Multi-task Collaborative Network (MCN) to achieve a joint learning of REC and RES for the first time. In MCN, RES can help REC to achieve better language-vision alignment, while REC can help RES to better locate the referent. In addition, we address a key challenge in this multi-task setup, i.e., the prediction conflict, with two innovative designs namely, Consistency Energy Maximization (CEM) and Adaptive Soft Non-Located Suppression (ASNLS). Specifically, CEM enables REC and RES to focus on similar visual regions by maximizing the consistency energy between two tasks. ASNLS supresses the response of unrelated regions in RES based on the prediction of REC. To validate our model, we conduct extensive experiments on three benchmark datasets of REC and RES, i.e., RefCOCO, RefCOCO+ and RefCOCOg. The experimental results report the significant performance gains of MCN over all existing methods, i.e., up to +7.13% for REC and +11.50% for RES over SOTA, which well confirm the validity of our model for joint REC and RES learning.
In this paper, we propose a novel end-to-end model, namely Single-Stage Grounding network (SSG), to localize the referent given a referring expression within an image. Different from previous multi-stage models which rely on object proposals or detected regions, our proposed model aims to comprehend a referring expression through one single stage without resorting to region proposals as well as the subsequent region-wise feature extraction. Specifically, a multimodal interactor is proposed to summarize the local region features regarding the referring expression attentively. Subsequently, a grounder is proposed to localize the referring expression within the given image directly. For further improving the localization accuracy, a guided attention mechanism is proposed to enforce the grounder to focus on the central region of the referent. Moreover, by exploiting and predicting visual attribute information, the grounder can further distinguish the referent objects within an image and thereby improve the model performance. Experiments on RefCOCO, RefCOCO+, and RefCOCOg datasets demonstrate that our proposed SSG without relying on any region proposals can achieve comparable performance with other advanced models. Furthermore, our SSG outperforms the previous models and achieves the state-of-art performance on the ReferItGame dataset. More importantly, our SSG is time efficient and can ground a referring expression in a 416*416 image from the RefCOCO dataset in 25ms (40 referents per second) on average with a Nvidia Tesla P40, accomplishing more than 9* speedups over the existing multi-stage models.
Referring expression comprehension aims to localize the object instance described by a natural language expression. Current referring expression methods have achieved good performance. However, none of them is able to achieve real-time inference without accuracy drop. The reason for the relatively slow inference speed is that these methods artificially split the referring expression comprehension into two sequential stages including proposal generation and proposal ranking. It does not exactly conform to the habit of human cognition. To this end, we propose a novel Realtime Cross-modality Correlation Filtering method (RCCF). RCCF reformulates the referring expression comprehension as a correlation filtering process. The expression is first mapped from the language domain to the visual domain and then treated as a template (kernel) to perform correlation filtering on the image feature map. The peak value in the correlation heatmap indicates the center points of the target box. In addition, RCCF also regresses a 2-D object size and 2-D offset. The center point coordinates, object size and center point offset together to form the target bounding box. Our method runs at 40 FPS while achieving leading performance in RefClef, RefCOCO, RefCOCO+ and RefCOCOg benchmarks. In the challenging RefClef dataset, our methods almost double the state-of-the-art performance (34.70% increased to 63.79%). We hope this work can arouse more attention and studies to the new cross-modality correlation filtering framework as well as the one-stage framework for referring expression comprehension.
In this paper, we address the problem of referring expression comprehension in videos, which is challenging due to complex expression and scene dynamics. Unlike previous methods which solve the problem in multiple stages (i.e., tracking, proposal-based matching), we tackle the problem from a novel perspective, textbf{co-grounding}, with an elegant one-stage framework. We enhance the single-frame grounding accuracy by semantic attention learning and improve the cross-frame grounding consistency with co-grounding feature learning. Semantic attention learning explicitly parses referring cues in different attributes to reduce the ambiguity in the complex expression. Co-grounding feature learning boosts visual feature representations by integrating temporal correlation to reduce the ambiguity caused by scene dynamics. Experiment results demonstrate the superiority of our framework on the video grounding datasets VID and LiOTB in generating accurate and stable results across frames. Our model is also applicable to referring expression comprehension in images, illustrated by the improved performance on the RefCOCO dataset. Our project is available at https://sijiesong.github.io/co-grounding.
Referring expression comprehension (REF) aims at identifying a particular object in a scene by a natural language expression. It requires joint reasoning over the textual and visual domains to solve the problem. Some popular referring expression datasets, however, fail to provide an ideal test bed for evaluating the reasoning ability of the models, mainly because 1) their expressions typically describe only some simple distinctive properties of the object and 2) their images contain limited distracting information. To bridge the gap, we propose a new dataset for visual reasoning in context of referring expression comprehension with two main features. First, we design a novel expression engine rendering various reasoning logics that can be flexibly combined with rich visual properties to generate expressions with varying compositionality. Second, to better exploit the full reasoning chain embodied in an expression, we propose a new test setting by adding additional distracting images containing objects sharing similar properties with the referent, thus minimising the success rate of reasoning-free cross-domain alignment. We evaluate several state-of-the-art REF models, but find none of them can achieve promising performance. A proposed modular hard mining strategy performs the best but still leaves substantial room for improvement. We hope this new dataset and task can serve as a benchmark for deeper visual reasoning analysis and foster the research on referring expression comprehension.