Do you want to publish a course? Click here

Projected Distribution Loss for Image Enhancement

91   0   0.0 ( 0 )
 Added by Mauricio Delbracio
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Features obtained from object recognition CNNs have been widely used for measuring perceptual similarities between images. Such differentiable metrics can be used as perceptual learning losses to train image enhancement models. However, the choice of the distance function between input and target features may have a consequential impact on the performance of the trained model. While using the norm of the difference between extracted features leads to limited hallucination of details, measuring the distance between distributions of features may generate more textures; yet also more unrealistic details and artifacts. In this paper, we demonstrate that aggregating 1D-Wasserstein distances between CNN activations is more reliable than the existing approaches, and it can significantly improve the perceptual performance of enhancement models. More explicitly, we show that in imaging applications such as denoising, super-resolution, demosaicing, deblurring and JPEG artifact removal, the proposed learning loss outperforms the current state-of-the-art on reference-based perceptual losses. This means that the proposed learning loss can be plugged into different imaging frameworks and produce perceptually realistic results.



rate research

Read More

Ill-posed inverse problems appear in many image processing applications, such as deblurring and super-resolution. In recent years, solutions that are based on deep Convolutional Neural Networks (CNNs) have shown great promise. Yet, most of these techniques, which train CNNs using external data, are restricted to the observation models that have been used in the training phase. A recent alternative that does not have this drawback relies on learning the target image using internal learning. One such prominent example is the Deep Image Prior (DIP) technique that trains a network directly on the input image with a least-squares loss. In this paper, we propose a new image restoration framework that is based on minimizing a loss function that includes a projected-version of the Generalized SteinUnbiased Risk Estimator (GSURE) and parameterization of the latent image by a CNN. We demonstrate two ways to use our framework. In the first one, where no explicit prior is used, we show that the proposed approach outperforms other internal learning methods, such as DIP. In the second one, we show that our GSURE-based loss leads to improved performance when used within a plug-and-play priors scheme.
We propose a large-margin Gaussian Mixture (L-GM) loss for deep neural networks in classification tasks. Different from the softmax cross-entropy loss, our proposal is established on the assumption that the deep features of the training set follow a Gaussian Mixture distribution. By involving a classification margin and a likelihood regularization, the L-GM loss facilitates both a high classification performance and an accurate modeling of the training feature distribution. As such, the L-GM loss is superior to the softmax loss and its major variants in the sense that besides classification, it can be readily used to distinguish abnormal inputs, such as the adversarial examples, based on their features likelihood to the training feature distribution. Extensive experiments on various recognition benchmarks like MNIST, CIFAR, ImageNet and LFW, as well as on adversarial examples demonstrate the effectiveness of our proposal.
123 - Zhenqi Fu , Xiaopeng Lin , Wu Wang 2021
For underwater applications, the effects of light absorption and scattering result in image degradation. Moreover, the complex and changeable imaging environment makes it difficult to provide a universal enhancement solution to cope with the diversity of water types. In this letter, we present a novel underwater image enhancement (UIE) framework termed SCNet to address the above issues. SCNet is based on normalization schemes across both spatial and channel dimensions with the key idea of learning water type desensitized features. Considering the diversity of degradation is mainly rooted in the strong correlation among pixels, we apply whitening to de-correlates activations across spatial dimensions for each instance in a mini-batch. We also eliminate channel-wise correlation by standardizing and re-injecting the first two moments of the activations across channels. The normalization schemes of spatial and channel dimensions are performed at each scale of the U-Net to obtain multi-scale representations. With such latent encodings, the decoder can easily reconstruct the clean signal, and unaffected by the distortion types caused by the water. Experimental results on two real-world UIE datasets show that the proposed approach can successfully enhance images with diverse water types, and achieves competitive performance in visual quality improvement.
We introduce a method for training neural networks to perform image or volume segmentation in which prior knowledge about the topology of the segmented object can be explicitly provided and then incorporated into the training process. By using the differentiable properties of persistent homology, a concept used in topological data analysis, we can specify the desired topology of segmented objects in terms of their Betti numbers and then drive the proposed segmentations to contain the specified topological features. Importantly this process does not require any ground-truth labels, just prior knowledge of the topology of the structure being segmented. We demonstrate our approach in three experiments. Firstly we create a synthetic task in which handwritten MNIST digits are de-noised, and show that using this kind of topological prior knowledge in the training of the network significantly improves the quality of the de-noised digits. Secondly we perform an experiment in which the task is segmenting the myocardium of the left ventricle from cardiac magnetic resonance images. We show that the incorporation of the prior knowledge of the topology of this anatomy improves the resulting segmentations in terms of both the topological accuracy and the Dice coefficient. Thirdly, we extend the method to 3D volumes and demonstrate its performance on the task of segmenting the placenta from ultrasound data, again showing that incorporating topological priors improves performance on this challenging task. We find that embedding explicit prior knowledge in neural network segmentation tasks is most beneficial when the segmentation task is especially challenging and that it can be used in either a semi-supervised or post-processing context to extract a useful training gradient from images without pixelwise labels.
188 - Jiang Hai , Zhu Xuan , Ren Yang 2021
Images captured in weak illumination conditions will seriously degrade the image quality. Solving a series of degradation of low-light images can effectively improve the visual quality of the image and the performance of high-level visual tasks. In this paper, we propose a novel Real-low to Real-normal Network for low-light image enhancement, dubbed R2RNet, based on the Retinex theory, which includes three subnets: a Decom-Net, a Denoise-Net, and a Relight-Net. These three subnets are used for decomposing, denoising, and contrast enhancement, respectively. Unlike most previous methods trained on synthetic images, we collect the first Large-Scale Real-World paired low/normal-light images dataset (LSRW dataset) for training. Our method can properly improve the contrast and suppress noise simultaneously. Extensive experiments on publicly available datasets demonstrate that our method outperforms the existing state-of-the-art methods by a large margin both quantitatively and visually. And we also show that the performance of the high-level visual task (emph{i.e.} face detection) can be effectively improved by using the enhanced results obtained by our method in low-light conditions. Our codes and the LSRW dataset are available at: https://github.com/abcdef2000/R2RNet.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا