Do you want to publish a course? Click here

Characterizing Topological Excitations of a Long-Range Heisenberg Model with Trapped Ions

192   0   0.0 ( 0 )
 Added by Stefan Birnkammer
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Realizing and characterizing interacting topological phases in synthetic quantum systems is a formidable challenge. Here, we propose a Floquet protocol to realize the antiferromagnetic Heisenberg model with power-law decaying interactions. Based on analytical and numerical arguments, we show that this model features a quantum phase transition from a spin liquid to a valence bond solid that spontaneously breaks lattice translational symmetry and is reminiscent of the Majumdar-Ghosh state. The different phases can be probed dynamically by measuring the evolution of a fully dimerized state. We moreover introduce an interferometric protocol to characterize the topological excitations and the bulk topological invariants of our interacting many-body system.



rate research

Read More

In recent years, dynamical phase transitions and out-of-equilibrium criticality have been at the forefront of ultracold gases and condensed matter research. Whereas universality and scaling are established topics in equilibrium quantum many-body physics, out-of-equilibrium extensions of such concepts still leave much to be desired. Using exact diagonalization and the time-dependent variational principle in uniform martrix product states, we calculate the time evolution of the local order parameter and Loschmidt return rate in transverse-field Ising chains with antiferromagnetic power law-decaying interactions, and map out the corresponding rich dynamical phase diagram. textit{Anomalous} cusps in the return rate, which are ubiquitous at small quenches within the ordered phase in the case of ferromagnetic long-range interactions, are absent within the accessible timescales of our simulations. We attribute this to much weaker domain-wall binding in the antiferromagnetic case. For quenches across the quantum critical point, textit{regular} cusps appear in the return rate and connect to the local order parameter changing sign, indicating the concurrence of two major concepts of dynamical phase transitions. Our results consolidate conclusions of previous works that a necessary condition for the appearance of anomalous cusps in the return rate after quenches within the ordered phase is for topologically trivial local spin flips to be the energetically dominant excitations in the spectrum of the quench Hamiltonian. Our findings are readily accessible in modern trapped-ion setups, and we outline the associated experimental considerations.
Generic short-range interacting quantum systems with a conserved quantity exhibit universal diffusive transport at late times. We employ non-equilibrium quantum field theory and semi-classical phase-space simulations to show how this universality is replaced by a more general transport process in a long-range XY spin chain at infinite temperature with couplings decaying algebraically with distance as $r^{-alpha}$. While diffusion is recovered for $alpha>1.5$, longer-ranged couplings with $0.5<alphaleq 1.5 $ give rise to effective classical Levy flights; a random walk with step sizes drawn from a distribution with algebraic tails. We find that the space-time dependent spin density profiles are self-similar, with scaling functions given by the stable symmetric distributions. As a consequence, for $0.5<alphaleq1.5$ autocorrelations show hydrodynamic tails decaying in time as $t^{-1/(2alpha-1)}$ and linear-response theory breaks down. Our findings can be readily verified with current trapped ion experiments.
Environmental interaction is a fundamental consideration in any controlled quantum system. While interaction with a dissipative bath can lead to decoherence, it can also provide desirable emergent effects including induced spin-spin correlations. In this paper we show that under quite general conditions, a dissipative bosonic bath can induce a long-range ordered phase, without the inclusion of any additional direct spin-spin couplings. Through a quantum-to-classical mapping and classical Monte Carlo simulation, we investigate the $T=0$ quantum phase transition of an Ising chain embedded in a bosonic bath with Ohmic dissipation. We show that the quantum critical point is continuous, Lorentz invariant with a dynamical critical exponent $z=1.07(9)$, has correlation length exponent $ u=0.80(5)$, and anomalous exponent $eta=1.02(6)$, thus the universality class distinct from the previously studied limiting cases. The implications of our results on experiments in ultracold atomic mixtures and qubit chains in dissipative environments are discussed.
For a large class of quantum many-body systems with U(1) symmetry, we prove a general inequality that relates the (off-diagonal) long-range order with the charge gap. For a system of bosons or fermions on a lattice or in continuum, the inequality implies that a ground state with off-diagonal long-range order inevitably has vanishing charge gap, and hence is characterized by nonzero charge susceptibility. For a quantum spin system, the inequality implies that a ground state within a magnetization plateau cannot have transverse long-range order.
We consider trapped bosons with contact interactions as well as Coulomb repulsion or gravitational attraction in one spatial dimension. The exact ground state energy and wave function are identified in closed form together with a rich phase diagram, unveiled by Monte Carlo methods, with crossovers between different regimes. A trapped McGuire quantum soliton describes the attractive case. Weak repulsion results in an incompressible Laughlin-like fluid with flat density, well reproduced by a Gross-Pitaevskii equation with long-range interactions. Higher repulsion induces Friedel oscillation and the eventual formation of a Wigner crystal.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا