No Arabic abstract
Computed Tomography (CT) is an advanced imaging technology used in many important applications. Here we present a deep-learning (DL) based CT super-resolution (SR) method that can reconstruct low-resolution (LR) sinograms into high resolution (HR) CT images. The method synergistically combines a SR model in sinogram domain, a deblur model in image domain, and the iterative framework into a CT SR algorithm super resolution and deblur based iterative reconstruction (SADIR). We incorporated the CT domain knowledge into the SADIR and unrolled it into a DL network (SADIR Net). The SADIR Net is a zero shot learning (ZSL) network, which can be trained and tested with a single sinogram in the test time. The SADIR was evaluated via SR CT imaging of a Catphan700 physical phantom and a biological ham, and its performance was compared to the other state of the art (SotA) DL-based methods. The results show that the zero-shot SADIR-Net can indeed provide a performance comparable to the other SotA methods for CT SR reconstruction, especially in situations where training data is limited. The SADIR method can find use in improving CT resolution beyond hardware limits or lowering requirement on CT hardware.
Recently, the use of deep learning techniques to reconstruct computed tomography (CT) images has become a hot research topic, including sinogram domain methods, image domain methods and sinogram domain to image domain methods. All these methods have achieved favorable results. In this article, we have studied the important functions of fully connected layers used in the sinogram domain to image domain approach. First, we present a simple domain mapping neural networks. Then, we analyze the role of the fully connected layers of these networks and visually analyze the weights of the fully connected layers. Finally, by visualizing the weights of the fully connected layer, we found that the main role of the fully connected layer is to implement the back projection function in CT reconstruction. This finding has important implications for the use of deep learning techniques to reconstruct computed tomography (CT) images. For example, since fully connected layer weights need to consume huge memory resources, the back-projection function can be implemented by using analytical algorithms to avoid resource occupation, which can be embedded in the entire network.
Computed tomography (CT) has played a vital role in medical diagnosis, assessment, and therapy planning, etc. In clinical practice, concerns about the increase of X-ray radiation exposure attract more and more attention. To lower the X-ray radiation, low-dose CT is often used in certain scenarios, while it will induce the degradation of CT image quality. In this paper, we proposed a training method that trained denoising neural networks without any paired clean data. we trained the denoising neural network to map one noise LDCT image to its two adjacent LDCT images in a singe 3D thin-layer low-dose CT scanning, simultaneously In other words, with some latent assumptions, we proposed an unsupervised loss function with the integration of the similarity between adjacent CT slices in 3D thin-layer lowdose CT to train the denoising neural network in an unsupervised manner. For 3D thin-slice CT scanning, the proposed virtual supervised loss function was equivalent to a supervised loss function with paired noisy and clean samples when the noise in the different slices from a single scan was uncorrelated and zero-mean. Further experiments on Mayo LDCT dataset and a realistic pig head were carried out and demonstrated superior performance over existing unsupervised methods.
Relaxometry studies in preterm and at-term newborns have provided insight into brain microstructure, thus opening new avenues for studying normal brain development and supporting diagnosis in equivocal neurological situations. However, such quantitative techniques require long acquisition times and therefore cannot be straightforwardly translated to in utero brain developmental studies. In clinical fetal brain magnetic resonance imaging routine, 2D low-resolution T2-weighted fast spin echo sequences are used to minimize the effects of unpredictable fetal motion during acquisition. As super-resolution techniques make it possible to reconstruct a 3D high-resolution volume of the fetal brain from clinical low-resolution images, their combination with quantitative acquisition schemes could provide fast and accurate T2 measurements. In this context, the present work demonstrates the feasibility of using super-resolution reconstruction from conventional T2-weighted fast spin echo sequences for 3D isotropic T2 mapping. A quantitative magnetic resonance phantom was imaged using a clinical T2-weighted fast spin echo sequence at variable echo time to allow for super-resolution reconstruction at every echo time and subsequent T2 mapping of samples whose relaxometric properties are close to those of fetal brain tissue. We demonstrate that this approach is highly repeatable, accurate and robust when using six echo times (total acquisition time under 9 minutes) as compared to gold-standard single-echo spin echo sequences (several hours for one single 2D slice).
We present SR3, an approach to image Super-Resolution via Repeated Refinement. SR3 adapts denoising diffusion probabilistic models to conditional image generation and performs super-resolution through a stochastic denoising process. Inference starts with pure Gaussian noise and iteratively refines the noisy output using a U-Net model trained on denoising at various noise levels. SR3 exhibits strong performance on super-resolution tasks at different magnification factors, on faces and natural images. We conduct human evaluation on a standard 8X face super-resolution task on CelebA-HQ, comparing with SOTA GAN methods. SR3 achieves a fool rate close to 50%, suggesting photo-realistic outputs, while GANs do not exceed a fool rate of 34%. We further show the effectiveness of SR3 in cascaded image generation, where generative models are chained with super-resolution models, yielding a competitive FID score of 11.3 on ImageNet.
Among the major remaining challenges for single image super resolution (SISR) is the capacity to recover coherent images with global shapes and local details conforming to human vision system. Recent generative adversarial network (GAN) based SISR methods have yielded overall realistic SR images, however, there are always unpleasant textures accompanied with structural distortions in local regions. To target these issues, we introduce the gradient branch into the generator to preserve structural information by restoring high-resolution gradient maps in SR process. In addition, we utilize a U-net based discriminator to consider both the whole image and the detailed per-pixel authenticity, which could encourage the generator to maintain overall coherence of the reconstructed images. Moreover, we have studied objective functions and LPIPS perceptual loss is added to generate more realistic and natural details. Experimental results show that our proposed method outperforms state-of-the-art perceptual-driven SR methods in perception index (PI), and obtains more geometrically consistent and visually pleasing textures in natural image restoration.