Do you want to publish a course? Click here

Some gap rigidity problems for compact Hermitian symmetric spaces

96   0   0.0 ( 0 )
 Added by Cong Ding
 Publication date 2020
  fields
and research's language is English
 Authors Cong Ding




Ask ChatGPT about the research

We prove a gap rigidity theorem for diagonal curves in irreducible compact Hermitian symmetric spaces of tube type, which is a dual analogy to a theorem obtained by Mok in noncompact case. Motivated by the proof we give a theorem on weaker gap rigidity problems for higher dimensional submanifolds.



rate research

Read More

347 - Andrew Clarke 2009
We consider the decomposition of a compact-type symmetric space into a product of factors and show that the rank-one factors, when considered as totally geodesic submanifolds of the space, are isolated from inequivalent minimal submanifolds.
76 - S. Goette , U. Semmelmann 2000
We establish extremality of Riemannian metrics g with non-negative curvature operator on symmetric spaces M=G/K of compact type with rk(G)-rk(K)le 1. Let g be another metric with scalar curvature k, such that gge g on 2-vectors. We show that kge k everywhere on M implies k=k. Under an additional condition on the Ricci curvature of g, kge k even implies g=g. We also study area-non-increasing spin maps onto such Riemannian manifolds.
We study a class of Poisson-Nijenhuis systems defined on compact hermitian symmetric spaces, where the Nijenhuis tensor is defined as the composition of Kirillov-Konstant-Souriau symplectic form with the so called Bruhat-Poisson structure. We determine its spectrum. In the case of Grassmannians the eigenvalues are the Gelfand-Tsetlin variables. We introduce the abelian algebra of collective hamiltonians defined by a chain of nested subalgebras and prove complete integrability. By construction, these models are integrable with respect to both Poisson structures. The eigenvalues of the Nijenhuis tensor are a choice of action variables. Our proof relies on an explicit formula for the contravariant connection defined on vector bundles that are Poisson with respect to the Bruhat-Poisson structure.
In a previous article the second author together with A. Pasquale determined the spectrum of the $Cos^lambda$ transform on smooth functions on the Grassmann manifolds $G_{p,n+1}$. This article extends those results to line bundles over certain Grassmannians. In particular we define the $Cos^lambda$ transform on smooth sections of homogeneous line bundles over$G_{p,n+1}$ and show that it is an intertwining operator between generalized ($chi$-spherical) principal series representations induced from a maximal parabolic subgroup of $mathrm{SL} (n+1, mathbb{K})$. Then we use the spectrum generating method to determine the $K$-spectrum of the $Cos^lambda$ transform.
We develop a combinatorial rigidity theory for symmetric bar-joint frameworks in a general finite dimensional normed space. In the case of rotational symmetry, matroidal Maxwell-type sparsity counts are identified for a large class of $d$-dimensional normed spaces (including all $ell^p$ spaces with $p ot=2$). Complete combinatorial characterisations are obtained for half-turn rotation in the $ell^1$ and $ell^infty$-plane. As a key tool, a new Henneberg-type inductive construction is developed for the matroidal class of $(2,2,0)$-gain-tight graphs.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا